11 research outputs found

    Trans-ethnic study design approaches for fine-mapping.

    Get PDF
    Studies that traverse ancestrally diverse populations may increase power to detect novel loci and improve fine-mapping resolution of causal variants by leveraging linkage disequilibrium differences between ethnic groups. The inclusion of African ancestry samples may yield further improvements because of low linkage disequilibrium and high genetic heterogeneity. We investigate the fine-mapping resolution of trans-ethnic fixed-effects meta-analysis for five type II diabetes loci, under various settings of ancestral composition (European, East Asian, African), allelic heterogeneity, and causal variant minor allele frequency. In particular, three settings of ancestral composition were compared: (1) single ancestry (European), (2) moderate ancestral diversity (European and East Asian), and (3) high ancestral diversity (European, East Asian, and African). Our simulations suggest that the European/Asian and European ancestry-only meta-analyses consistently attain similar fine-mapping resolution. The inclusion of African ancestry samples in the meta-analysis leads to a marked improvement in fine-mapping resolution

    Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study

    Get PDF
    Comprehensivemetabolite profiling capturesmany highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serumamino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6million genotyped and imputed variants in 8545 nondiabetic Finnishmen fromtheMETabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966).We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579,minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboringmissense variants ofMAF < 1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017,MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447,MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend < 0.001). These novel signals provide further insight into the molecularmechanisms of amino acidmetabolismand potentially, their perturbations in disease

    The power of numbers

    No full text
    The technical and methodological advancements, as well as the knowledge accrued over the past decade on the haplotype block structure of the human genome, have enabled investigators to tackle the complexity of the genetic architecture of type 2 diabetes in populations of European and non-European descent by performing large-scale genome-wide association studies (GWAS) for both common and rare genetic variants. Interestingly, while interpreting the GWAS results one may observe that as the number of identified type 2 diabetes risk variants has increased over time, and the loci uncovered by earlier GWAS have been further replicated in larger association studies, the individual (per-allele) effect estimate has become smaller than the one originally detected in the discovery GWAS. This may be due to the non-mutually exclusive occurrence of two statistical phenomena, usually dubbed as "winner's curse" and "spectrum bias" effects. The present commentary discusses the work of the China Kadoorie Biobank Collaborative Group, which sought to provide a demonstration of the calculation of (relatively) unbiased allelic effect sizes for a set of 56 established type 2 diabetes risk variants in a large population-based cohort study of Chinese adult individuals. In particular we critically discuss whether theGWAS approach should remain a matter of statistical constraints only, or whether its integration with functional maps may highlight some sub-threshold loci as informative as those that reach genome-wide significance. The complementary information that could arise from the full integration of the genetic and functional maps holds the promise of potentially uncovering clinically relevant mechanistic insights and might expand the regulatory framework in which to interpret the functional follow-up and fine-mapping currently ongoing at established type 2 diabetes risk loci

    Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study.

    No full text
    Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease

    Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study

    No full text
    Abstract Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = &lt; 5×10−8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10−26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10−9), LIPC (rs10468017, P = 1.5×10−8), and WWOX (rs9937914, P = 3.8×10−8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10−9). Gene-based tests identified two novel genes harboring missense variants of MAF &lt; 1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10−6) and BCAT2 with valine (Pgene = 7.4×10−7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10−40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10−11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend&lt;0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease
    corecore