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Abstract We show that any connected regular graph with d + 1 distinct eigenvalues and odd-girth 2d + 1 is
distance-regular, and in particular that it is a generalized odd graph.
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1 Introduction

A generalized odd graph is a distance-regular graph of diameter D, whose shortest odd cycles
have length 2D + 1 (the so-called odd-girth). It is also called an almost-bipartite distance-
regular graph, or a regular thin near (2D + 1)-gon. Well-known examples of such graphs are
the Odd graphs (also known as the Kneser graphs K(2D+1, D)), and the folded (2D+1)-cubes.

In this note, we shall characterize these graphs, by showing that any connected regular
graph with d + 1 distinct eigenvalues and odd-girth (at least) 2d + 1 is a distance-regular
generalized odd graph. We remark that D = d for distance-regular graphs, but in general we
only have the inequality D ≤ d. In general it is not true that any connected regular graph with
diameter D and odd-girth 2D + 1 is a generalized odd graph. Counterexamples can easily be
found for the case D = 2 (among the triangle-free regular graphs with diameter two there are
many graphs that are not strongly regular).

Huang and Liu [11] proved that any graph with the same spectrum as a generalized odd
graph is such a graph. Because the odd-girth of a graph follows from the spectrum, our
characterization is a generalization of this result.

For background on distance-regular graphs we refer the reader to [1], for eigenvalues of
graphs to [2], for spectral characterizations of graphs to [5, 6], and for spectral and other
algebraic characterizations of distance-regular graphs to [7] and [8], respectively. To show the
claimed characterization, we shall use the so-called spectral excess theorem due to Fiol and
Garriga [10]. Let Γ be a connected k-regular graph with d + 1 distinct eigenvalues. The excess
of a vertex u of Γ is the number of vertices at distance d from u. We also need the so-called
predistance polynomial pd of Γ, which will be explained in some detail in Section 3. The
important property of pd is that the value of pd(k) — the so-called spectral excess — only
depends on the spectrum of Γ.
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Spectral Excess Theorem. Let Γ be a connected regular graph with d+1 distinct eigenvalues.
Then Γ is distance-regular if and only if the average excess equals the spectral excess.

For short proofs of this theorem we refer the reader to [3, 9].

2 The spectral characterization

Let Γ be a connected k-regular graph with adjacency matrix A having d+1 distinct eigenvalues
k = λ0 > λ1 > · · · > λd and finite odd-girth at least 2d + 1. It follows that every vertex u has
vertices at distance d, because otherwise the vertices at odd distance from u on one hand and
the vertices at even distance from u on the other hand, would give a bipartition of the graph,
contradicting that the odd-girth is finite. Because Γ has diameter D at most d, it follows that
D = d, and that the odd-girth equals 2d + 1.

Because (Ai)uv counts the number of walks of length i in Γ from u to v, it follows that
p(A) has zero diagonal for any odd polynomial p of degree at most 2d − 1. Therefore also
tr p(A) = 0. Because the trace of p(A) can also be expressed in terms of the spectrum of Γ,
this also shows that the odd-girth condition on Γ is a condition on the spectrum of Γ. In the
following, we make frequent use of polynomials. One of these is the Hoffman polynomial H
defined by H(x) = n

π0

∏d
i=1(x− λi), where n is the number of vertices and π0 =

∏d
i=1(k − λi).

This polynomial satisfies H(A) = J , the all-ones matrix.
Let us now consider two arbitrary vertices u, v at distance d. By considering the Hoffman

polynomial, it follows that (Ad)uv = π0
n . By considering the minimal polynomial (or (x−k)H),

it follows that (Ad+1)uv − ãd(Ad)uv = 0, where ãd =
∑d

i=0 λi is the coefficient of xd in the
minimal polynomial. Hence (Ad+1)uv = ãd

π0
n .

Lemma. The average excess kd of Γ equals n
ãdπ2

0
trA2d+1.

Proof. For a vertex u, let Γd(u) be the set of vertices at distance d from u. Then

(A2d+1)uu =
∑

v∈Γd(u)

(Ad)uv(Ad+1)vu = kd(u)ãdπ
2
0/n2,

where kd(u) = |Γd(u)| is the excess of u. Therefore kdãdπ
2
0/n = trA2d+1 and ãd 6= 0. tu

In order to apply the spectral excess theorem, we have to ensure that kd = pd(k). However,
pd(k) and n

ãdπ2
0

trA2d+1 only depend on the spectrum of Γ. Therefore, if Γ is cospectral with

a distance-regular graph Γ′, then the average kd must equal pd(k), because it does so for Γ′.
Hence we have:

Corollary. (Huang and Liu [11]) Any graph cospectral with a generalized odd graph, is a
generalized odd graph.
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3 The odd-girth characterization

Now let us show that kd = pd(k) for all graphs that we consider. To do this, we need some basic
properties of the predistance polynomials; see also [9]. First, 〈p, q〉 = 1

n tr(p(A)q(A)) defines
an inner product (determined by the spectrum of Γ) on the space of polynomials modulo the
minimal polynomial of Γ. Using this inner product, one can find an orthogonal system of so-
called predistance polynomials pi, i = 0, 1, . . . , d, where pi has degree i and is normalized such
that 〈pi, pi〉 = pi(k) 6= 0. The predistance polynomials resemble the distance polynomials of a
distance-regular graph; they also satisfy a three-term recurrence:

xpi = βi−1pi−1 + αipi + γi+1pi+1, i = 0, 1, . . . , d,

where we let β−1 = 0 and γd+1pd+1 = 0 (the latter we may consider as a multiple of the
minimal polynomial). A final property of these polynomials is that

∑d
i=0 pi equals the Hoffman

polynomial H. This implies that the leading coefficient of pd equals n
π0

(the same as that of
H).

For the graph Γ under consideration, specific properties hold. It is easy to show by induction
that αi = 0 for i < d and that pi is an even or odd polynomial depending on whether i is even
or odd, for all i ≤ d. Indeed, it is clear that p0 = 1 is even and p1 = x is odd, and hence that
α0 = 0. Now suppose that αi = 0 for i < j < d and that pi is even or odd (depending on i) for
i ≤ j. Then the three-term recurrence implies that αjpj(k) = 〈xpj , pj〉 = 1

n tr(Apj(A)2) = 0
because xp2

j is an odd polynomial of degree at most 2d− 1. Hence αj = 0 and then it follows
from the recurrence that pj+1 is even or odd, which finishes the inductive argument.

What we shall use now is that xp2
d is an odd polynomial. It follows that

αdpd(k) = 〈xpd, pd〉 =
1
n

tr(Apd(A)2) =
n

π2
0

trA2d+1.

Thus, we have almost shown that the two expression in terms of the spectrum are the same;
what remains is to show that αd = ãd. Therefore, consider again vertices u and v at distance
d. Then

αd = αd(H(A))uv = αd(pd(A))uv = (Apd(A))uv =
n

π0
(Ad+1)uv = ãd.

where the second last step follows because xpd is odd or even, and therefore has no term of
degree d. Thus, kd = pd(k) and by the spectral excess theorem we derive that Γ is distance-
regular, which finishes the proof of our result.

Theorem. Let Γ be a connected regular graph with d+1 distinct eigenvalues and finite odd-girth
at least 2d + 1. Then Γ is a distance-regular generalized odd graph.

It is unclear whether we can drop the regularity condition on Γ, or in other words, whether there
exist nonregular graphs with d + 1 distinct eigenvalues and odd-girth 2d + 1. For nonregular
graphs it matters what matrix we consider (adjacency, Laplacian, etcetera). However, for d = 2
we know the following:
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Proposition. For the adjacency matrix, as well as for the Laplacian matrix, a connected graph
with odd-girth five and three distinct eigenvalues is regular (and hence distance-regular).

Proof. For the adjacency matrix A we consider the minimal polynomial m. Suppose λ0 > λ1 >
λ2 are the distinct eigenvalues of A. The diagonal of m(A) = O gives that (λ0 + λ1 + λ2)ku =
−λ0λ1λ2, where ku is the valency of vertex u. In case λ0 +λ1 +λ2 = λ0λ1λ2 = 0, if follows that
λ0 = −λ2 and λ1 = 0, so the graph would be bipartite, which is false. Thus ku is constant.

For a graph whose Laplacian matrix has three distinct eigenvalues it is known that the
number µ of common nonneighbors of two adjacent vertices is constant (see [4]). Since there
are no triangles, this implies that any two vertices at distance two have the same valency. The
graph is connected with at least one odd cycle, hence there exists a walk of even length between
any two vertices u and v. Because there are no triangles, every even vertex on that walk (which
includes u and v) has the same valency. tu
For the adjacency matrix we also managed to prove regularity for the analogous cases with four
and five distinct eigenvalues, but we choose not to include the technical details.
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