220 research outputs found
Worry is associated with robust reductions in heart rate variability: a transdiagnostic study of anxiety psychopathology
Background
Individuals with anxiety disorders display reduced resting-state heart rate variability (HRV), although findings have been contradictory and the role of specific symptoms has been less clear. It is possible that HRV reductions may transcend diagnostic categories, consistent with dimensional-trait models of psychopathology. Here we investigated whether anxiety disorders or symptoms of anxiety, stress, worry and depression are more strongly associated with resting-state HRV.
Methods
Resting-state HRV was calculated in participants with clinical anxiety (n = 25) and healthy controls (n = 58). Symptom severity measures of worry, anxiety, stress, and depression were also collected from participants, regardless of diagnosis.
Results
Participants who fulfilled DSM-IV criteria for an anxiety disorder displayed diminished HRV, a difference at trend level significance (p = .1, Hedges’ g = -.37, BF10 = .84). High worriers (Total n = 41; n = 22 diagnosed with an anxiety disorder and n = 19 not meeting criteria for any psychopathology) displayed a robust reduction in resting state HRV relative to low worriers (p = .001, Hedges’ g = -.75, BF10 = 28.16).
Conclusions
The specific symptom of worry – not the diagnosis of an anxiety disorder – was associated with the most robust reductions in HRV, indicating that HRV may provide a transdiagnostic biomarker of worry. These results enhance understanding of the relationship between the cardiac autonomic nervous system and anxiety psychopathology, providing support for dimensional-trait models consistent with the Research Domain Criteria framework
The SNAPSHOT study protocol : SNAcking, Physical activity, Self-regulation, and Heart rate Over Time
Peer reviewedPublisher PD
Further Experimental Studies of Two-Body Radiative \Upsilon Decays
Continuing our studies of radiative Upsilon(1S) decays, we report on a search
for Upsilon to gamma eta and Upsilon to gamma f_{J}(2220) in 61.3 pb^{-1} of
e^{+}e^{-} data taken with the CLEO II detector at the Cornell Electron Storage
Ring. For the gamma eta search the three decays of the eta meson to
pi^{+}pi^{-}pi^{0}, pi^{0}pi^{0}pi^{0}, and gamma gamma were investigated. We
found no candidate events in the two (3\pi)^{0} modes and no significant excess
over expected backgrounds in the gamma gamma mode to set a limit on the
branching fraction of B(Upsilon to gamma eta) < 2.1 x 10^{-5} at 90% C.L. The
three charged two-body final states h h-bar (h = pi^{+}, K^{+}, p) were
investigated for f_{J}(2220) production, with one, one, and two events found,
respectively. Limits at 90% C.L. of B(\Upsilon to gamma f_{J}) x B(f_{J} to h
h-bar) ~ 1.5 x 10^{-5} have been set for each of these modes. We compare our
results to measurements of other radiative Upsilon decays, to measurements of
radiative J/psi decays, and to theoretical predictions.Comment: 19 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Fermi Large Area Telescope observations of PSR J1836+5925
The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly
unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments
of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic
plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8
million years, a spindown luminosity of 1.1 erg s, and a
large off-peak emission component, making it quite unusual among the known
gamma-ray pulsar population. We present an analysis of one year of LAT data,
including an updated timing solution, detailed spectral results and a long-term
light curve showing no indication of variability. No evidence for a surrounding
pulsar wind nebula is seen and the spectral characteristics of the off-peak
emission indicate it is likely magnetospheric. Analysis of recent XMM
observations of the X-ray counterpart yields a detailed characterization of its
spectrum, which, like Geminga, is consistent with that of a neutron star
showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa
Search for gamma-ray emission from magnetars with the Fermi Large Area Telescope
We report on the search for 0.1-10 GeV emission from magnetars in 17 months
of Fermi Large Area Telescope (LAT) observations. No significant evidence for
gamma-ray emission from any of the currently-known magnetars is found. The most
stringent upper limits to date on their persistent emission in the Fermi-LAT
energy range are estimated between ~10^{-12}-10^{-10} erg/s/cm2, depending on
the source. We also searched for gamma-ray pulsations and possible outbursts,
also with no significant detection. The upper limits derived support the
presence of a cut-off at an energy below a few MeV in the persistent emission
of magnetars. They also show the likely need for a revision of current models
of outer gap emission from strongly magnetized pulsars, which, in some
realizations, predict detectable GeV emission from magnetars at flux levels
exceeding the upper limits identified here using the Fermi-LAT observations.Comment: ApJ Letters in press; Corresponding authors: Caliandro G. A., Hadasch
D., Rea N., Burnett
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Does the diurnal cycle of cortisol explain the relationship between physical performance and cognitive function in older adults?
Background
Regular physical activity is a promising strategy to treat and prevent cognitive decline. The mechanisms that mediate these benefits are not fully clear but physical activity is thought to attenuate the harmful effects of chronic psychological stress and hypercortisolism on cognition. However, the circadian pattern of cortisol secretion is complex and it is not known which aspects are most closely associated with increased cognitive function and better physical performance. This is the first study to simultaneously measure cognitive function, the diurnal cycle of salivary cortisol and physical performance in older adults, without cognitive impairment (n = 30) and with amnestic Mild Cognitive Impairment (aMCI) (n = 30).
Results
Regression analysis showed that better cognitive function was associated with better physical performance. A greater variance in cortisol levels across the day from morning to evening was associated with better cognitive function and physical performance.
Conclusions
The results support the idea that a more dynamic cortisol secretion pattern is associated with better cognitive function and physical performance even in the presence of cognitive impairment, but our results could not confirm a mediating role in this relationship
- …