6 research outputs found

    Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means

    Get PDF
    The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical fuels. Many fuel forms such as coal, oil and gas have been intensively used and are becoming limited. Hydrogen could become an important clean fuel for the future. Among different technologies for hydrogen production, oxygenic natural and artificial photosynthesis using direct photochemistry in synthetic complexes have a great potential to produce hydrogen as both use clean and cheap sources - water and solar energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms water is splitted into electrons and protons during primary photosynthetic processes. The electrons and protons are redirected through the photosynthetic electron transport chain to the hydrogen-producing enzymes-hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (> 10%). Our review examines the main pathways of H2 photoproduction using photosynthetic organisms and biomimetic photosynthetic systems and focuses on developing new technologies based on the effective principles of photosynthesis

    Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    Get PDF
    We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs) onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature and only mg quantities of MWCNTs were expended. The large surface area and porous nature of the electrospun Nylon-6/MWCNT nanofibers facilitates greater analyte permeability. The experimental analysis has indicated that the dipole moment, functional group and vapour pressure of the analytes determine the magnitude of the responsiveness
    corecore