301 research outputs found

    Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures

    Get PDF

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Socio-economic voter profile and motives for Islamist support in Morocco

    Get PDF
    Based on an original dataset of merged electoral and census data, this article is a study of electoral support for the Islamist Party in Morocco in the 2002 and 2007 elections. It differentiates between the clientelistic, grievance and horizontal network type of supporters. We disentangle these profiles empirically on the basis of the role of education, wealth and exclusion for Islamist votes. We find no evidence of the clientelistic profile, but a shift from grievance in 2002 to a horizontal network profile in 2007. World Values Survey individual level data are used as a robustness check, yielding similar results. Qualitative evidence on a changing mobilization pattern of the party between 2002 and 2007 supports our conclusions

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    Bloodlines: mammals, leeches, and conservation in southern Asia

    Get PDF
    Southern Asia is a biodiversity hotspot both for terrestrial mammals and for leeches. Many small-mammal groups are under-studied in this region, while other mammals are of known conservation concern. In addition to standard methods for surveying mammals, it has recently been demonstrated that residual bloodmeals within leeches can be sequenced to find mammals in a given area. While these invertebrate-parasite-derived DNA (iDNA) methods are promising, most of the leech species utilized for this type of survey remain unevaluated, notwithstanding that their diversity varies substantially. Here we examine approximately 750 individual leech specimens in the genus Haemadipsa across a large range in southern Asia (Bangladesh, Cambodia, and China), specifically reviewing the diversity of mammals they feed on and their own genetic structuring. Leeches were found to feed on a considerable variety of mammals, corroborating prior studies. Additionally, leeches were found to have fed both on bats and on birds, neither of which has previously been recorded with this method. The genetic structuring of the leeches themselves revealed 15 distinct clades of which only two precisely corresponded to previously characterized species, indicating that much work is needed to finalize classifications in this genus. Most importantly, with regards to mammal conservation, leeches in these clades appear to feed on a broad range of mammals

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well

    Opportunities for high-energy neutron- and deuteron-induced measurements for fusion technology at the Soreq applied research accelerator facility (SARAF)

    Get PDF
    The Soreq Applied Research Accelerator Facility (SARAF) will be based on a 40 MeV, 5 mA CW (continuous wave) proton/deuteron superconducting linear accelerator, currently under construction at Soreq Nuclear Research Center in Yavne, Israel. It is planned to commence operation during 2025. Experiments at SARAF could provide data on high-energy deuteron- and neutron-induced cross-sections, yields and radiation damage, which are invaluable for the design and operation of the International Fusion Materials Irradiation Facility-DEMO-Oriented NEutron Source (IFMIF-DONES), and fusion technology in general. Pulsed beams (∼1 nsec) of variable energy deuterons will irradiate a lithium target and generate pulsed neutron beams with energy up to ∼55 MeV, which will be used to measure energy-dependent neutron-induced differential cross-sections, utilizing time of flight techniques. Impinging continuous wave (CW) 40 MeV deuteron beams on a unique gallium-indium (GaIn) liquid-jet target, will generate a neutron rate of more than 1 × 1015 n/sec, with energies up to ∼45 MeV. We plan to use this high rate to measure integral neutron-induced reaction yields of all channels simultaneously, employing an original novel method that will identify the reaction-produced nuclei via accurate mass measurement. The neutron-energy dependence of the yields could be deduced by combining measurements at various deuteron energies. The measured cross-sections and yields at SARAF may predict the activation characteristics of construction materials of IFMIF-DONES and future fusion reactors. The deuteron beams will also be used directly to measure cross-sections via in-beam and offline methods. The high neutron and deuteron rates will extend SARAF’s reach to rare materials. The deuteron beam power density on the liquid GaIn target will be 100 kW/cm2 (similar to IFMIF-DONES) on a 2 cm2 spot. The resulting neutron flux on small secondary samples will be in the 1013 n/cm2/s level, only an order of magnitude less than IFMIF-DONES. Therefore, SARAF may serve as a pilot facility for fusion-related radiation damage studies, providing important information towards the design of IFMIF-DONES

    Extended Y chromosome haplotypes resolve multiple and unique lineages of the Jewish priesthood

    Get PDF
    It has been known for over a decade that a majority of men who self report as members of the Jewish priesthood (Cohanim) carry a characteristic Y chromosome haplotype termed the Cohen Modal Haplotype (CMH). The CMH has since been used to trace putative Jewish ancestral origins of various populations. However, the limited number of binary and STR Y chromosome markers used previously did not provide the phylogenetic resolution needed to infer the number of independent paternal lineages that are encompassed within the Cohanim or their coalescence times. Accordingly, we have genotyped 75 binary markers and 12 Y-STRs in a sample of 215 Cohanim from diverse Jewish communities, 1,575 Jewish men from across the range of the Jewish Diaspora, and 2,099 non-Jewish men from the Near East, Europe, Central Asia, and India. While Cohanim from diverse backgrounds carry a total of 21 Y chromosome haplogroups, 5 haplogroups account for 79.5% of Cohanim Y chromosomes. The most frequent Cohanim lineage (46.1%) is marked by the recently reported P58 T->C mutation, which is prevalent in the Near East. Based on genotypes at 12 Y-STRs, we identify an extended CMH on the J-P58* background that predominates in both Ashkenazi and non-Ashkenazi Cohanim and is remarkably absent in non-Jews. The estimated divergence time of this lineage based on 17 STRs is 3,190 ± 1,090 years. Notably, the second most frequent Cohanim lineage (J-M410*, 14.4%) contains an extended modal haplotype that is also limited to Ashkenazi and non-Ashkenazi Cohanim and is estimated to be 4.2 ± 1.3 ky old. These results support the hypothesis of a common origin of the CMH in the Near East well before the dispersion of the Jewish people into separate communities, and indicate that the majority of contemporary Jewish priests descend from a limited number of paternal lineages
    • …
    corecore