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Efficient 3D Stress Capture of Variable-Stiffness and Sandwich
Beam Structures

M. Patni∗, S. Minera†, R.M.J. Groh‡, A. Pirrera§ P.M. Weaver¶

Accurate modeling of composite structures is important for their safe application under

different loading conditions. To provide accurate predictions of three-dimensional (3D) stress

fields in an efficient computational framework, we employ a modeling approach that builds

upon the recently developed hierarchical Serendipity Lagrange finite elements. The approach

provides Layer-Wise (LW) and Equivalent Single-Layer (ESL) models for analyzing constant-

and variable-stiffness laminated beam structures. To enhance the capability of the ESL model,

two Zig-Zag (ZZ) functions, namely Murakami’s ZZ function (MZZF) and the Refined ZZ

theory function (RZT), are implemented. For constant-stiffness laminated and sandwichbeams,

theRZTZZ functionpredicts the structural responsemore accurately than theMZZF.However,

for variable-stiffness laminated structures, the applicability of RZT remains unknown and its

accuracy is therefore tested within the present formulation. Results obtained are validated

against 3D closed-form and 3D Finite Element (FE) solutions available from the literature. For

similar levels of accuracy, significant gains in computational efficiency are achieved over 3D FE

and LW models by using the ESL approach with RZT ZZ functions.

Nomenclature

A = cross-section area of the laminate

b = width of the laminate

C̄ = material stiffness matrix

C̄i j = transformed elastic coefficients

D = kinematic differential operator

E = Young’s modulus

Fτ = cross-section expansion functions

G = shear modulus
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h = thickness of the laminate

k = layer number (lamina index)

Kτsi j,Kτϕi j,Kφsi j,Kφϕi j = Fundamental Nuclei of the stiffness matrix

L = length of the laminated beam

m = number of expansion terms

Ni = Lagrangian one-dimensional shape functions

Nl = number of layers

u = displacement vector

u, v,w = displacement fields in x, y, z directions

uiτ = generalized displacement vector

V = volume of the structure

Wint,Wext = internal and external work

(x, y, z) = co-ordinates of the reference system

γxz, γyz = transverse shear strains

γxy = in-plane shear strain

δ = virtual variation

ε = generalized strain vector

εxx, εyy = in-plane normal strains

εzz = transverse normal strain

θ = fiber orientation angle

ν = Poisson’s ratio

σ = generalized stress vector

σxx, σyy = in-plane normal stresses

σzz = transverse normal stress

τxz, τyz = transverse shear stresses

τxy = in-plane shear stress

φM = Murakami’s zig-zag function

φRx , φ
R
y = refined zig-zag theory functions

ψx, φy = zig-zag rotations about x and y axis
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I. Introduction
The application of multi-layered composite structures has significantly increased in various engineering disciplines,

including aerospace, automotive, sports and health. Laminated composites allow designers to tailor properties through-

thickness by varying the fiber orientation of the plies within the laminate and optimizing the stacking sequence for

structural performance. Recent advancements in composite manufacturing technology have facilitated the production of

laminates with curvilinear fibers, so-called variable-stiffness (VS) composites (or Variable Angle Tow composites).

This technological advance removes the constraint on fibers to be rectilinear within each lamina and provides scope for

an enlarged design space. However, both types of composite laminate—with unidirectional and curvilinear fibers—lack

reinforcement through the thickness and are prone to delamination failure, which adversely affects their structural

integrity. Demanding levels of performance, especially in the aerospace industry, call for efficient modeling tools to

predict the initiation of failure. To this end, models for accurate full-field stress prediction are an important prerequisite.

In modeling multi-layered composite and sandwich structures, major modeling challenges include: (i) predicting

transverse shear and normal deformations occurring due to low orthotropy ratios (G13/E11) [1]; (ii) capturing the slope

variation of the three displacement fields across the thickness due to transverse anisotropy, commonly known as the

Zig-Zag (ZZ) effect [2]; and (iii) to account for the inter-laminar continuity (IC) of displacements and transverse stresses.

In addition, modeling variable-stiffness laminates requires continuous path modeling to ensure continuity across the

laminate [3]. Due to these aforementioned complexities, high-fidelity finite element models (FEM) or layer-wise

(LW) theories are often employed to obtain reliable three-dimensional (3D) stresses with the desired level of accuracy.

However, these models are computationally expensive and demand large amounts of computer storage. Thus, with the

aim of developing computationally efficient design tools for the practicing engineer, there remains a need for efficient

modeling techniques.

In Classical Laminate Theory (CLT) [4] and First-Order Shear Deformation Theory (FSDT) [5] composite layers

are analyzed based on an equivalent single-layer description, which lacks the kinematic fidelity to accurately predict the

3D structural response of laminated composites. To overcome the deficiencies of CLT and FSDT, and to improve the

stress prediction capacity of equivalent single-layer theories, several higher-order theories with enhanced kinematics

have been proposed in the literature [6–9]. Local layer-wise functions (called zig-zag functions) have also been included

within the global higher-order in-plane displacement approximation to account for the ZZ effect. The reader is referred

to [10] for detailed historic review, and to [11] for most recent assessment of different zig-zag theories.

Out of various ZZ functions, Murakami’s zig-zag Function (MZZF) [12] is widely employed by researchers. The

MZZF is constructed by a priori assuming a periodic change of the displacement field slope at layer interfaces. Numerous

studies [13–17] available in the literature adopt the concept of enhancing the displacement field with MZZF and have

shown significant improvement in the accuracy with a marginal increase in the computational cost with respect to

classical ESL models. However, the MZZF fails to predict accurate ply-level stresses when employed for sandwich
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structures with large face-to-core stiffness ratios and thick laminates with arbitrary layup [18, 19]. As an alternative,

the Refined Zig-Zag Theory (RZT) developed by Tessler et al. [20, 21] can be used. The RZT accounts for layer-wise

differences in transverse shear moduli, which are the properties that physically drive the ZZ effect. Here, the differences

in transverse shear rigidities of each layer, and the average transverse shear rigidities of the entire layup, define the

layer-wise ZZ slopes of the in-plane displacement fields. Recent works [19, 22, 23] have shown the superiority of the

RZT ZZ functions in capturing accurate ply level 3D stresses for straight-fiber laminated composites.

Most research in the literature focuses on modeling techniques for unidirectional laminated composite structures.

These models need further enhancement in order to account for curvilinear fiber laminates, i.e. variable-stiffness (VS)

composites. To date, most studies on VS laminates deal with global structural phenomena, e.g. vibration and buckling.

For an extensive review of the literature, the interested reader is referred to [24]. Relatively little work has been

conducted in capturing 3D stress fields in VS laminates. Out of these few works, most published papers on modeling

VS laminates use finely meshed FE models that can be computationally prohibitive for rapid design iterations [25–27].

Tornabene et al. [28] evaluated the application of different structural theories on the static solution of doubly-curved

variable-stiffness laminated composite panels and showed that accurate 3D stress fields for such laminates can only

be predicted using layer-wise theories. In an attempt to develop more computationally efficient numerical models,

Demasi et al. [29] formulated ESL models refined with MZZF and LW models based on the Generalized Unified

Formulation (GUF) [30–32], and benchmarked the performance of the different approaches. However, the study mainly

focused on highlighting the computational efficiency gains over 3D FE models. By validating relatively simple stacking

sequences, the robustness of the approach in analyzing arbitrary and complex lay-ups remains an open question. Groh

and Weaver [33, 34] describe a third-order zig-zag implementation based on RZT within a Hellinger-Reissner mixed

variational framework and use it to predict 3D stresses for arbitrary VS laminates. This particular model was solved in

the strong form using the Differential Quadrature Method, and because a global mesh was used, local singularities in

the fiber definition caused noise in the numerical calculation of derivatives. Moreover, discrepancies in the transverse

normal stresses for some laminates were observed when compared with 3D FE solutions. The authors’ recent work

on VS laminates [35] solves this disparity in the transverse stress results by adopting a LW model of the Serendipity

Lagrange expansion (SLE) based Unified Formulation (UF). The LW approach of the displacement-based formulation

was shown to yield accurate localized 3D stress fields. Although the model is computationally efficient compared to a

3D FE method, the LW approach is still prohibitive for preliminary design studies since the computational expense

multiples with the number of layers.

In order to provide an efficient framework for modeling constant- and variable-stiffness laminates as well as sandwich

structures, we propose an ESL approach implemented within the Serendipity Lagrange Expansion-based Unified

Formulation (UF-SLE-ESL). The hierarchical capability of this expansion model provides significant versatility with

respect to the structural modeling. To account for the through-thickness transverse anisotropy, MZZF and RZT ZZ
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Fig. 1 Reference system for a variable-stiffness laminated beam.

functions are employed for the first time within the UF-SLE model. Since the formulation is displacement-based, it

does not ensure continuous transverse stresses across layer interfaces. In order to capture through-thickness transverse

shear and normal stresses reliably, a post-processing step is employed where the transverse stresses are recovered by

integrating the in-plane stresses in Cauchy’s 3D indefinite equilibrium equations.

The remainder of the paper is structured as follows. Section II A and B provides the displacement field approximation

for LW, ESL-MZZF and ESL-RZT models within the Unified Formulation framework. Section II C, D and E provide

an overview of the stiffness matrix, strain and stress computations, respectively. In Section III, results obtained using

the present modeling approaches, for constant- and variable-stiffness laminates, are discussed and compared with 3D

elasticity and 3D FE solutions. Finally, conclusions are drawn in Section IV.

II. Numerical Formulation

A. Displacement Field Approximation

Consider a variable-stiffness laminated beam of length L, rectangular cross-section of width b and thickness h, and

composed of Nl layers. The material properties and the thickness of each layer may be entirely different. The beam is

referred to in a Cartesian coordinate system (x, y, z), where the y-direction is defined to be along the principle beam

axis, while the z-axis is in the transverse stacking direction as shown in Figure 1. Let θ denote the fiber angle measured

with respect to the y-direction that can vary along the beam’s span. Finally, let the superscript k be used to refer to layer

number k.

Our model employs the Unified Formulation (UF) framework by Carrera and co-workers [36–38], which relies on a

displacement-based formulation of the finite element method. The advantage of a finite element discretization is that

arbitrary geometries and boundary conditions can readily be modeled. The three-dimensional displacement field is
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given as

u(x, y, z) = {u v w}> . (1)

In the current setting, the longitudinal axis of the structure is discretized with four-noded, Lagrange 1D finite elements, so

that the displacement field can be approximated element-wise by means of local shape functions Ni(y), and generalized

nodal displacements, ui(x, z), such that

u(x, y, z) =
4∑
i=1

Ni(y)ui(x, z). (2)

The transverse, or cross-sectional, deformations are approximated using hierarchical Serendipity Lagrange Expansion

(SLE) functions Fτ(x, z). Adopting this expansion model, cross-sections are discretized using four-noded Lagrange

sub-domains and the displacement field within each sub-domain can be enriched by increasing the order of the local

Serendipity Lagrange expansion. The cross-sectional displacement field at the ith beam node is expressed as

ui(x, z) =
m∑
τ=1

Fτ(x, z)uiτ, (3)

where m is the number of terms depending on the order of expansion and uiτ are generalized displacement vectors. By

introducing the cross-sectional approximation of Eq. (3) into the FE discretization along the beam axis of Eq. (2), the

displacement field reads

u(x, y, z) =
4∑
i=1

m∑
τ=1

Ni(y)Fτ(x, z)uiτ . (4)

The reader is referred to [39, 40] for a more detailed implementation and treatment of SLE models.

B. Zig-Zag Kinematics

The UF-SLE model allows a LW approach to be implemented directly with each layer modeled as one sub-domain

and the kinematics within each layer (or sub-domain) varied hierarchically. This representation allows for an accurate

strain field by satisfying the ZZ requirement and an accurate determination of 3D stresses at layer level. However, the

number of variables in the model scales with the number of layers in the laminate and thus, the added accuracy comes at

greater computational cost. To overcome this issue, an ESL approach is implemented within the UF-SLE framework,

i.e. a single 4−noded Serendipity Lagrange element is used to model the beam’s cross-section. Thus, the number of

unknowns in the model becomes independent of the number of layers. Furthermore, the hierarchical nature of the SLE

function allows higher-order terms to be added in the displacement field to account for severe transverse shear and

normal deformations. While the higher-order terms in the displacement field provide accurate modeling of global

structural effects, they are not capable of explicitly capturing ZZ effects. Therefore, there is a need to incorporate ZZ

kinematics within the ESL approach in order to present it as a good compromise between local, layer-wise accuracy and
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computational cost. The most commonly used ZZ function is Murakami’s ZZ function (MZZF) [12], which is given by

φM
k

(z) = (−1)k
2
hk
(z − zkm), (5)

where zkm is the mid-plane coordinate and hk is the thickness of layer k. MZZF assumes alternating values of +1 and −1

at the top and bottom interfaces regardless of the planar location. Also, it does not depend on the mechanical properties

of layers and is often presented as an effective enrichment of the displacement field, regardless of the type of stacking

sequence. Numerous studies in literature [14, 29] show that superior representation of displacements and stresses,

combined with less computational cost, can be achieved by including MZZF for constant- and variable-stiffness laminates

and sandwich structures. However, for symmetric (with more than three layers) and unsymmetric sandwich lay-ups, or

for laminates with externally weak layers, MZZF fails to predict the stress response accurately [19]. Therefore, another

class of zig-zag function, as introduced by Tessler et al. [20], termed Refined Zig-Zag Theory (RZT), is incorporated

within the UF-SLE ESL model. In RZT, the zig-zag slopes mk
i are defined by the difference between the transverse

shear rigidities Gk
iz of layer k, and effective transverse shear rigidity Gi of the entire layup [23]

mk
i =

Gi

Gk
iz

− 1, with Gi =

[
1
h

Nl∑
k=1

hk

Gk
iz

]−1

, i = x, y, (6)

where Nl is the total number of layers, and hk and h are the thickness of layer k and total laminate thickness, respectively.

The ZZ function is defined by

φR
k

i (z) = zmk
i + cki , i = x, y (7)

where cki enforces interlaminar continuity and is given as

cki = mk
i

h
2
+

k∑
j=2

h j−1
(

Gi

G j−1
iz

−
Gi

Gk
iz

)
. (8)

It is to be noted that the RZT ZZ function φRk

i (z) is derived from transverse material properties, therefore in case of

variable-stiffness laminates, the function varies with the in-plane location, i.e. φRk

i (x, y, z).

Following the standard definition of the MZZF and RZT ZZ functions, and incorporating these within the UF-SLE
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framework, the assumed displacement field, as given by Eq. (4), can now be written:

u(x, y, z) =
4∑
i=1

Ni(y)

(
m∑
τ=1

Fτ(x, z)uiτ + φM (z)ψxi

)
v(x, y, z) =

4∑
i=1

Ni(y)

(
m∑
τ=1

Fτ(x, z)viτ + φM (z)ψyi

)
w(x, y, z) =

4∑
i=1

Ni(y)

(
m∑
τ=1

Fτ(x, z)wiτ

)
,

(9)

and

u(x, y, z) =
4∑
i=1

Ni(y)

(
m∑
τ=1

Fτ(x, z)uiτ + φRx (x, y, z)ψxi

)
v(x, y, z) =

4∑
i=1

Ni(y)

(
m∑
τ=1

Fτ(x, z)viτ + φRy (x, y, z)ψyi

)
w(x, y, z) =

4∑
i=1

Ni(y)

(
m∑
τ=1

Fτ(x, z)wiτ

)
,

(10)

where ψxi and ψyi are ZZ rotations at the ith beam node. Finally, we now have three displacement field approximations

in the UF-SLE model as given by Eqs. (4), (9) and (10) which correspond to the LW, the ESL-MZZF and the ESL-RZT

theories, respectively. In the remainder of this paper, these models are referred as UF-LW, UF-MZZF and UF-RZT.

C. Fundamental Nucleus of the Stiffness Matrix

Elastic equilibrium is enforced via the Principle of Virtual Displacements, which, in a quasi-static setting, states that

δWint = δWext, (11)

where δ denotes the first variation with respect to displacements, and Wint and Wext denote the internal and external

work, respectively.

By definition, the internal work is the work done by the internal stresses over the corresponding internal strains and

is equivalent to the elastic strain energy. Noting that Wint =
∑

e We
int and letting le be the length of the generic beam

element and A be the cross-sectional area,

δWe
int =

∫
le

∫
A

δε>σ dA dl . (12)

In the Unified Formulation notation, the internal work can be re-written as

δWe
int = δu

>
jsϕK

τsφϕi j
e uiτφ, (13)
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where

K
τsφϕi j
e =


Kτsi j Kτϕi j

Kφsi j Kφϕi j

 , u jsϕ =

{
u js vjs wjs ψx j ψyj

}>
, uiτφ =

{
uiτ viτ wiτ ψxi ψyi

}>
.

Matrices Kτsi j , Kτϕi j , Kφsi j and Kφϕi j are referred to as the Fundamental Nuclei of the stiffness matrix. For a given

τ, s, i, j and φ, ϕ these matrices are of size 3 × 3, 3 × 2, 2 × 3 and 2 × 2, respectively. These fundamental nuclei are

expanded by using the indices τ, s = 1, . . . ,m; φ, ϕ = m + 1 and i, j = 1, . . . ,4; in order to obtain the elemental stiffness

matrix, Kτsφϕi j
e . The layer-wise model is obtained by removing stiffness terms, Kτϕi j , Kφsi j and Kφϕi j , that account for

the zig-zag kinematics. The explicit form for the matrix, Kτsi j , can be found in Appendix A of [35] and the expression

for other matrices, as required by ESL-ZZ models, are given as

Kτϕi j
xx = < C̄66 FτϕRx Ni,y Nj,y > + < C̄55 Fτ,z ϕ

R
x,z

NiNj > + < C̄56 FτϕRx,z Ni,y Nj > + < C̄56 Fτ,z ϕ
R
x NiNj,y >

+ < C̄15 Fτ,z ϕ
R
x,x

NiNj > + < C̄15 Fτ,x ϕ
R
x,z

NiNj > + < C̄16 FτϕRx,x Ni,y Nj > + < C̄16 Fτ,x ϕ
R
x NiNj,y >

+ < C̄11 Fτ,x ϕ
R
x,x

NiNj > + < C̄16 Fτ,x ϕ
R
x,y

NiNj > + < C̄56 Fτ,z ϕ
R
x,y

NiNj > + < C̄66 FτϕRx,y Ni,y Nj >,

(14)

Kτϕi j
xy = < C̄26 FτϕRy Ni,y Nj,y > + < C̄45 Fτ,z ϕ

R
y,z

NiNj > + < C̄25 FτϕRy,z Ni,y Nj > + < C̄46 Fτ,z ϕ
R
y NiNj,y >

+ < C̄14 Fτ,z ϕ
R
y,x

NiNj > + < C̄56 Fτ,x ϕ
R
y,z

NiNj > + < C̄12 FτϕRy,x Ni,y Nj > + < C̄66 Fτ,x ϕ
R
y NiNj,y >

+ < C̄16 Fτ,x ϕ
R
y,x

NiNj > + < C̄66 Fτ,x ϕ
R
y,y

NiNj > + < C̄46 Fτ,z ϕ
R
y,y

NiNj > + < C̄26 FτϕRy,y Ni,y Nj >,

(15)

Kτϕi j
yx = < C̄26 FτϕRx Ni,y Nj,y > + < C̄45 Fτ,z ϕ

R
x,z

NiNj > + < C̄46 FτϕRx,z Ni,y Nj > + < C̄25 Fτ,z ϕ
R
x NiNj,y >

+ < C̄56 Fτ,z ϕ
R
x,x

NiNj > + < C̄14 Fτ,x ϕ
R
x,z

NiNj > + < C̄66 FτϕRx,x Ni,y Nj > + < C̄12 Fτ,x ϕ
R
x NiNj,y >

+ < C̄16 Fτ,x ϕ
R
x,x

NiNj > + < C̄12 Fτ,x ϕ
R
x,y

NiNj > + < C̄25 Fτ,z ϕ
R
x,y

NiNj > + < C̄26 FτϕRx,y Ni,y Nj >,

(16)

Kτϕi j
yy = < C̄22 FτϕRy Ni,y Nj,y > + < C̄44 Fτ,z ϕ

R
y,z

NiNj > + < C̄24 FτϕRy,z Ni,y Nj > + < C̄24 Fτ,z ϕ
R
y NiNj,y >

+ < C̄46 Fτ,z ϕ
R
y,x

NiNj > + < C̄46 Fτ,x ϕ
R
y,z

NiNj > + < C̄26 FτϕRy,x Ni,y Nj > + < C̄26 Fτ,x ϕ
R
y NiNj,y >

+ < C̄66 Fτ,x ϕ
R
y,x

NiNj > + < C̄26 Fτ,x ϕ
R
y,y

NiNj > + < C̄24 Fτ,z ϕ
R
y,y

NiNj > + < C̄22 FτϕRy,y Ni,y Nj >,

(17)

Kτϕi j
zx = < C̄46 FτϕRx Ni,y Nj,y > + < C̄35 Fτ,z ϕ

R
x,z

NiNj > + < C̄36 FτϕRx,z Ni,y Nj > + < C̄45 Fτ,z ϕ
R
x NiNj,y >

+ < C̄55 Fτ,z ϕ
R
x,x

NiNj > + < C̄13 Fτ,x ϕ
R
x,z

NiNj > + < C̄56 FτϕRx,x Ni,y Nj > + < C̄14 Fτ,x ϕ
R
x NiNj,y >

+ < C̄15 Fτ,x ϕ
R
x,x

NiNj > + < C̄14 Fτ,x ϕ
R
x,y

NiNj > + < C̄45 Fτ,z ϕ
R
x,y

NiNj > + < C̄46 FτϕRx,y Ni,y Nj >,

(18)
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Kτϕi j
zy = < C̄24 FτϕRy Ni,y Nj,y > + < C̄34 Fτ,z ϕ

R
y,z

NiNj > + < C̄23 FτϕRy,z Ni,y Nj > + < C̄44 Fτ,z ϕ
R
y NiNj,y >

+ < C̄45 Fτ,z ϕ
R
y,x

NiNj > + < C̄36 Fτ,x ϕ
R
y,z

NiNj > + < C̄25 FτϕRy,x Ni,y Nj > + < C̄46 Fτ,x ϕ
R
y NiNj,y >

+ < C̄56 Fτ,x ϕ
R
y,x

NiNj > + < C̄46 Fτ,x ϕ
R
y,y

NiNj > + < C̄44 Fτ,z ϕ
R
y,y

NiNj > + < C̄24 FτϕRy,y Ni,y Nj >,

(19)

Kφsi j
xx = < C̄66 φ

R
x FsNi,y Nj,y > + < C̄55 φ

R
x,z

Fs,z NiNj > + < C̄56 φ
R
x Fs,z Ni,y Nj > + < C̄56 φ

R
x,z

FsNiNj,y >

+ < C̄15 φ
R
x,z

Fs,x NiNj > + < C̄15 φ
R
x,x

Fs,z NiNj > + < C̄16 φ
R
x Fs,x Ni,y Nj > + < C̄16 φ

R
x,x

FsNiNj,y >

+ < C̄11 φ
R
x,x

Fs,x NiNj > + < C̄16 φ
R
x,y

Fs,x NiNj > + < C̄56 φ
R
x,y

Fs,z NiNj > + < C̄66 φ
R
x,y

FsNiNj,y >,

(20)

Kφsi j
xy = < C̄26 φ

R
x FsNi,y Nj,y > + < C̄45 φ

R
x,z

Fs,z NiNj > + < C̄25 φ
R
x Fs,z Ni,y Nj > + < C̄46 φ

R
x,z

FsNiNj,y >

+ < C̄14 φ
R
x,z

Fs,x NiNj > + < C̄56 φ
R
x,x

Fs,z NiNj > + < C̄12 φ
R
x Fs,x Ni,y Nj > + < C̄66 φ

R
x,x

FsNiNj,y >

+ < C̄16 φ
R
x,x

Fs,x NiNj > + < C̄12 φ
R
x,y

Fs,x NiNj > + < C̄25 φ
R
x,y

Fs,z NiNj > + < C̄26 φ
R
x,y

FsNiNj,y >,

(21)

Kφsi j
xz = < C̄46 φ

R
x FsNi,y Nj,y > + < C̄35 φ

R
x,z

Fs,z NiNj > + < C̄45 φ
R
x Fs,z Ni,y Nj > + < C̄36 φ

R
x,z

FsNiNj,y >

+ < C̄13 φ
R
x,z

Fs,x NiNj > + < C̄55 φ
R
x,x

Fs,z NiNj > + < C̄14 φ
R
x Fs,x Ni,y Nj > + < C̄56 φ

R
x,x

FsNiNj,y >

+ < C̄15 φ
R
x,x

Fs,x NiNj > + < C̄14 φ
R
x,y

Fs,x NiNj > + < C̄45 φ
R
x,y

Fs,z NiNj > + < C̄46 φ
R
x,y

FsNiNj,y >,

(22)

Kφsi j
yx = < C̄26 φ

R
y FsNi,y Nj,y > + < C̄45 φ

R
y,z

Fs,z NiNj > + < C̄46 φ
R
y Fs,z Ni,y Nj > + < C̄25 φ

R
y,z

FsNiNj,y >

+ < C̄56 φ
R
y,z

Fs,x NiNj > + < C̄14 φ
R
y,x

Fs,z NiNj > + < C̄66 φ
R
y Fs,x Ni,y Nj > + < C̄12 φ

R
y,x

FsNiNj,y >

+ < C̄16 φ
R
y,x

Fs,x NiNj > + < C̄66 φ
R
y,y

Fs,x NiNj > + < C̄46 φ
R
y,y

Fs,z NiNj > + < C̄26 φ
R
y,y

FsNiNj,y >,

(23)

Kφsi j
yy = < C̄22 φ

R
y FsNi,y Nj,y > + < C̄44 φ

R
y,z

Fs,z NiNj > + < C̄24 φ
R
y Fs,z Ni,y Nj > + < C̄24 φ

R
y,z

FsNiNj,y >

+ < C̄46 φ
R
y,z

Fs,x NiNj > + < C̄46 φ
R
y,x

Fs,z NiNj > + < C̄26 φ
R
y Fs,x Ni,y Nj > + < C̄26 φ

R
y,x

FsNiNj,y >

+ < C̄66 φ
R
y,x

Fs,x NiNj > + < C̄26 φ
R
y,y

Fs,x NiNj > + < C̄24 φ
R
y,y

Fs,z NiNj > + < C̄22 φ
R
y,y

FsNiNj,y >,

(24)

Kφsi j
yz = < C̄24 φ

R
y FsNi,y Nj,y > + < C̄34 φ

R
y,z

Fs,z NiNj > + < C̄44 φ
R
y Fs,z Ni,y Nj > + < C̄23 φ

R
y,z

FsNiNj,y >

+ < C̄36 φ
R
y,z

Fs,x NiNj > + < C̄45 φ
R
y,x

Fs,z NiNj > + < C̄46 φ
R
y Fs,x Ni,y Nj > + < C̄25 φ

R
y,x

FsNiNj,y >

+ < C̄56 φ
R
y,x

Fs,x NiNj > + < C̄46 φ
R
y,y

Fs,x NiNj > + < C̄44 φ
R
y,y

Fs,z NiNj > + < C̄24 φ
R
y,y

FsNiNj,y >,

(25)

Kφϕi j
xx = < C̄66 φ

R
x ϕ

R
x Ni,y Nj,y > + < C̄55 φ

R
x,z
ϕRx,z NiNj > + < C̄56 φ

R
x ϕ

R
x,z

Ni,y Nj > + < C̄56 φ
R
x,z
ϕRx NiNj,y >

+ < C̄15 φ
R
x,z
ϕRx,x NiNj > + < C̄15 φ

R
x,x
ϕRx,z NiNj > + < C̄16 φ

R
x ϕ

R
x,x

Ni,y Nj > + < C̄16 φ
R
x,x
ϕRx NiNj,y >

+ < C̄11 φ
R
x,x
ϕRx,x NiNj > + < C̄16 φ

R
x,x
ϕRx,y NiNj > + < C̄16 φ

R
x,y
ϕRx,x NiNj > + < C̄56 φ

R
x,y
ϕRx,z NiNj >

+ < C̄56 φ
R
x,z
ϕRx,y NiNj > + < C̄66 φ

R
x,y
ϕRx,y NiNj > + < C̄66 φ

R
x ϕ

R
x,y

Ni,y Nj > + < C̄66 φ
R
x,y
ϕRx NiNj,y >,

(26)
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Kφϕi j
xy = < C̄26 φ

R
x ϕ

R
y Ni,y Nj,y > + < C̄45 φ

R
x,z
ϕRy,z NiNj > + < C̄25 φ

R
x ϕ

R
y,z

Ni,y Nj > + < C̄46 φ
R
x,z
ϕRy NiNj,y >

+ < C̄14 φ
R
x,z
ϕRy,x NiNj > + < C̄56 φ

R
x,x
ϕRy,z NiNj > + < C̄12 φ

R
x ϕ

R
y,x

Ni,y Nj > + < C̄66 φ
R
x,x
ϕRy NiNj,y >

+ < C̄16 φ
R
x,x
ϕRy,x NiNj > + < C̄66 φ

R
x,x
ϕRy,y NiNj > + < C̄12 φ

R
x,y
ϕRy,x NiNj > + < C̄25 φ

R
x,y
ϕRy,z NiNj >

+ < C̄46 φ
R
x,z
ϕRy,y NiNj > + < C̄26 φ

R
x,y
ϕRy,y NiNj > + < C̄26 φ

R
x ϕ

R
y,y

Ni,y Nj > + < C̄26 φ
R
x,y
ϕRy NiNj,y >,

(27)

Kφϕi j
yx = < C̄26 φ

R
y ϕ

R
x Ni,y Nj,y > + < C̄45 φ

R
y,z
ϕRx,z NiNj > + < C̄46 φ

R
y ϕ

R
x,z

Ni,y Nj > + < C̄25 φ
R
y,z
ϕRx NiNj,y >

+ < C̄56 φ
R
y,z
ϕRx,x NiNj > + < C̄14 φ

R
y,x
ϕRx,z NiNj > + < C̄66 φ

R
y ϕ

R
x,x

Ni,y Nj > + < C̄12 φ
R
y,x
ϕRx NiNj,y >

+ < C̄16 φ
R
y,x
ϕRx,x NiNj > + < C̄12 φ

R
y,x
ϕRx,y NiNj > + < C̄66 φ

R
y,y
ϕRx,x NiNj > + < C̄46 φ

R
y,y
ϕRx,z NiNj >

+ < C̄25 φ
R
y,z
ϕRx,y NiNj > + < C̄26 φ

R
y,y
ϕRx,y NiNj > + < C̄26 φ

R
y ϕ

R
x,y

Ni,y Nj > + < C̄26 φ
R
y,y
ϕRx NiNj,y >,

(28)

Kφϕi j
yy = < C̄22 φ

R
y ϕ

R
y Ni,y Nj,y > + < C̄44 φ

R
y,z
ϕRy,z NiNj > + < C̄24 φ

R
y ϕ

R
y,z

Ni,y Nj > + < C̄24 φ
R
y,z
ϕRy NiNj,y >

+ < C̄46 φ
R
y,z
ϕRy,x NiNj > + < C̄46 φ

R
y,x
ϕRy,z NiNj > + < C̄26 φ

R
y ϕ

R
y,x

Ni,y Nj > + < C̄26 φ
R
y,x
ϕRy NiNj,y >

+ < C̄66 φ
R
y,x
ϕRy,x NiNj > + < C̄26 φ

R
y,x
ϕRy,y NiNj > + < C̄26 φ

R
y,y
ϕRy,x NiNj > + < C̄24 φ

R
y,y
ϕRy,z NiNj >

+ < C̄24 φ
R
y,z
ϕRy,y NiNj > + < C̄22 φ

R
y,y
ϕRy,y NiNj > + < C̄22 φ

R
y ϕ

R
y,y

Ni,y Nj > + < C̄22 φ
R
y,y
ϕRy NiNj,y >,

(29)

where < (.) >=
∫
V
(.) dV , calculated using Gaussian quadrature, and C̄i j are the material stiffness coefficients as

discussed in Section D. The above expressions are applicable for the UF-RZT model. The stiffness matrix for the

UF-MZZF model can be calculated by replacing φRx and φRy by φM and its variation ϕRx and ϕRy by ϕM in Eqs. (14)–(29).

The elemental stiffness matrix, so-obtained, is assembled in a global stiffness matrix following the standard finite

element procedure. For the sake of brevity, the derivation of the fundamental nucleus of the loading vector from the

virtual variation of the external work is not reported here, but can be found in [36].

D. Strain and Stress Components

From basic elasticity, the generalized strain component vector can be written as

ε =Du, (30)

where ε> =
{
εxx, εyy, εzz, γyz, γzx, γxy

}
andD is the kinematic partial differential operator

D =



∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0



>

. (31)
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By substituting Eqs. (4), (9) and (10), in Eq. (30), the elemental strain component vector for UF-LW, UF-MZZF and

UF-RZT models is given by

ε = Giτuiτ, ε = Giτuiτ + GM
i ψi, and ε = Giτuiτ + GR

i ψi, (32)

respectively, where

Giτ =



NiFτ,x 0 0

0 Ni,y Fτ 0

0 0 NiFτ,z

0 NiFτ,z Ni,y Fτ

NiFτ,z 0 NiFτ,x

Ni,y Fτ NiFτ,x 0



, uiτ =



uiτ

viτ

wiτ


,

GM
i =



0 0 0

0 0 0

0 0 0

0 Niφ
M
,z 0

Niφ
M
,z 0 0

0 0 0



, GR
i =



Niφ
R
x,x

0 0

0 Niφ
R
y,y
+ Ni,y φ

R
y 0

0 0 0

0 Niφ
R
y,z

0

Niφ
R
x,z

0 0

Niφ
R
x,y
+ Ni,y φ

R
x Niφ

R
y,x

0



, ψi =



ψxi

ψyi

0


.

Eqs. (32) use Einstein’s summation notation over repeated indices and a subscript preceded by a comma denotes

differentiation with respect to the corresponding spatial coordinate. It is noted that in case of constant-stiffness (straight

fiber) laminate, the RZT ZZ functions depend only on the thickness coordinate, and therefore, derivatives of φRx and φRy

with respect to x and y are zero. Furthermore, in the present study, we have considered variable-stiffness laminates with

fiber-angle variation only along the spanwise direction y, and thus, φRx,x and φRy,x are zero.

For a linear elastic material undergoing infinitesimal strains and small displacements, the stresses are derived from

the constitutive relation as given below,

σ = C̄ε, (33)
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or 

σxx

σyy

σzz

τyz

τxz

τxy



=



C̄11 C̄12 C̄13 C̄14 C̄15 C̄16

C̄22 C̄23 C̄24 C̄25 C̄26

C̄33 C̄34 C̄35 C̄36

C̄44 C̄45 C̄46

Symmetric C̄55 C̄56

C̄66





εxx

εyy

εzz

γyz

γxz

γxy



, (34)

where coefficients C̄i j are the transformed elastic coefficients referred to the global (x, y, z) coordinate system that

depends on the mechanical properties of the laminate material and fiber orientation angle. The explicit expression for

coefficients Ck
i j are not included here for sake of brevity, but can be found in [41].

E. Posteriori Calculation of the Transverse Stresses

As the present approach is displacement-based, computing stresses using the constitutive relation may lead to

discontinuities in the transverse stresses at the interface between two adjacent layers, thereby violating traction continuity.

Accurate modeling of a laminated structure requires a description of inter-laminar continuous transverse stresses.

Therefore, in the current model transverse stresses are recovered by employing the indefinite equilibrium equations of

3D elasticity and integrating in-plane stresses in the thickness direction. The 3D stress equilibrium equations for the

static case, and in the absence of body forces, are

σi j, j = 0, i, j = x, y, z, (35)

where a comma denotes differentiation and Einstein’s summation notation has been used. In summary, the in-plane

stresses, σxx , σyy and τxy , are computed conventionally using the constitutive relations. Transverse shear and normal

stresses, τxz , τyz , and σzz are calculated as

σk
iz(z) = σ

k
izb
−

∫ z

zk
b

(
σix,x + σiy,y

)
dz, (36)

where σk
iz(z) is the stress in the k th-layer and σk

izb
is the stress at the bottom of the k th-layer. This technique is commonly

known as Stress Recovery (SR). Additionally, the hierarchical nature of the UF-SLE model allows for higher-order terms

in the displacement field approximation to be used, and therefore, derivatives of in-plane stresses can be computed

analytically. On the other hand, in classic 3D FE elements, linear or quadratic elements are usually employed, and thus,

the derivatives of in-plane stresses are obtained by employing numerical schemes, such as finite differences, which may

13



not yield accurate results.

It is also important to verify the derivatives of in-plane stresses when modeling variable-stiffness composite structures.

Because the material properties vary spatially in VS laminates, implying the variability of Hooke’s coefficients at

element level, the derivatives of material stiffness coefficients must be taken into account. For instance, to recover

transverse shear stress τyz using Eq. (36), derivatives of in-plane stresses are calculated as

∂τxy

∂x
=

(
C̄61

∂εxx
∂x
+ C̄62

∂εyy

∂x
+ C̄63

∂εzz
∂x
+ C̄66

∂γxy

∂x

)
+

(
εxx

∂C̄61
∂x
+ εyy

∂C̄62
∂x
+ εzz

∂C̄63
∂x
+ γxy

∂C̄66
∂x

)
,

∂σyy

∂y
=

(
C̄21

∂εxx
∂y
+ C̄22

∂εyy

∂y
+ C̄23

∂εzz
∂y
+ C̄26

∂γxy

∂y

)
+

(
εxx

∂C̄21
∂y
+ εyy

∂C̄22
∂y
+ εzz

∂C̄23
∂y
+ γxy

∂C̄26
∂y

)
. (37)

The derivatives of material stiffness coefficients can be computed exactly as given in Ref. [29] or by employing finite

differences.

III. Numerical Results and Discussion
In this section, the three models discussed so far, namely UF-LW, UF-MZZF and UF-RZT, are employed for

analyzing constant- and variable-stiffness composite laminates—labeled A–F. Through-thickness axial and transverse

stresses are compared with 3D elasticity and 3D FE solutions as given in the literature [22, 33]. The material properties

and stacking sequences for constant- and variable-stiffness laminates considered herein are tabulated in Tables 1, 2

and 3, respectively.

All results for axial normal, σyy , transverse shear, τyz , and transverse normal, σzz , stress presented in this paper are

normalized as follows

σ̄yy =
h2

q0L2 · σyy(x, y, z), τ̄yz =
1
q0
· τyz(x, y, z), σ̄zz =

1
q0
· σzz(x, y, z), (38)

where h is the total laminate thickness, L is the beam length and q0 is the applied loading magnitude.

A. Constant-Stiffness Composite Laminates

Consider a multilayered, square cross-section beam of length-to-thickness ratio, L/h = 8. The beam is aligned

with the Cartesian y-axis and the cross-section is in the xz-plane. The layers are arranged in a general fashion with

different ply thicknesses, material properties and material orientations. The beam is simply-supported at the two ends

y = 0 and y = L and loaded by a sinusoidal distributed load equally divided between the top and the bottom surfaces,

Pt
z = Pb

z = −q0/2 · sin(πy/L), as shown in Figure 2. Results obtained using the present approach are validated against

Pagano’s closed-form 3D elasticity solution [42]. As the exact solution is available for an infinitely wide plate subject to

cylindrical bending [33], in the present approach, a plane strain condition is enforced. To realize this condition, material

14



Table 1 Mechanical properties of the materials considered in the present study.

Material Ex Ey Ez Gyz Gxz Gxy

[GPa]

p (carbon-fibre reinforced plastic) 1.0 25.0 1.0 0.5 0.2 0.5
pvc (poly-vinyl chloride foam) 0.25 0.25 0.25 0.0962 0.0962 0.0962

h (honey-comb) 0.25×10−3 0.25×10−3 2.5×10−3 0.875×10−3 1.75×10−3 1.0×10−6

IM7 (IM7/8852 composite) 12.0 163.0 12.0 4.0 3.2 5.0

νyz νxz νxy

p 0.25 0.25 0.01
pvc 0.3 0.3 0.3
h 3.0×10−5 3.0×10−5 0.9

IM7 0.3 0.3 0.022

Fig. 2 Representation of a multilayered beam simply-supported at both the ends subjected to a sinusoidal
distributed load at the top and the bottom surface.

stiffness coefficients C̄12, C̄13, C̄14, C̄15, C̄16, C̄24, C̄25, C̄26, C̄34, C̄35, C̄36, C̄45, C̄46 and C̄56 in Eq. (34) are all set to zero,

as described in Appendix A of [40].

Layer-wise stresses are usually computed using the constitutive relation as given by Eq. (33). However, if the

modeling fidelity is not sufficient most displacement-based approaches produce discontinuous transverse stresses at

the layer interfaces, which violates the traction equilibrium condition between layers. The accuracy of the transverse

stresses evaluated via Hooke’s law is not acceptable when ESL models are employed. Moreover, transverse stresses

calculated by integration of the equilibrium equations were shown to provide, in general, the best overall results, as

Table 2 Stacking sequence for constant-stiffness laminates considered in the present study. Subscripts indicate
the repetition of a property over the corresponding number of layers.

Laminate Layer thickness ratio Material Stacking sequence

Lam A [0.25] [p5] [90/0/90/0/90]

Lam B [0.12/0.23/0.12] [p2/pvc/h/pvc/p2] [90/05/90]
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also confirmed in [29]. For this reason, the in-plane stresses are herein calculated by using Hooke’s law, whereas the

transverse stresses are obtained via integration of the equilibrium equations.

The analyses are carried out by employing the LW and ESL theories within the UF-SLE framework. The beam

is discretized with 30 B4 (four-noded) elements and a fifth-order expansion function is used to define cross-section

kinematics. The number of beam elements and order of expansion are determined by performing a convergence analysis.

Through-thickness distribution of normalized axial stress σ̄yy (at y = L/2), transverse shear stress τ̄yz (at y = 0) and

transverse normal stress σ̄zz (at y = L/2) for laminates A and B are plotted in Figure 3. From the plots, it can be clearly

seen that the LW approach of the UF-SLE model (UF-LW) shows excellent correlation with Pagano’s 3D elasticity

solution, as given in [22]. Moreover, the current fidelity of the model (with 30 B4 beam elements and fifth-order

expansion) is sufficient to capture the transverse shear and normal stress profile accurately without any posteriori stress

recovery step. For the ESL models with MZZF and RZT ZZ function, on the other hand, there is a need to recover the

transverse stresses from the 3D stress equilibrium equations. However, a much greater gain in computational efficiency

is obtained with the UF-MZZF and UF-RZT compared to the UF-LW model, as shown in Table 4, where the number of

beam and cross-section elements, order of expansion, degrees of freedom (DOFs) and algebraic system complexities,

for each case are compared. The recovered stress distributions are shown as UF-MZZF-SR and UF-RZT-SR in the plots.

Clearly, for laminate A, both ESL models, UF-MZZF and UF-RZT, predict the stress response accurately. However, the

UF-RZT model outperforms the UF-MZZF model in capturing the extreme case of transverse orthotropy in laminate B.

This stress distribution arises due to the low transverse shear stiffness of the inner layer which makes it insufficient to

support the peak transverse shear stress of the adjacent outer layer, and thus, a stress reversal in stiffer layers occurs.

B. Variable-Stiffness Composite Laminates

Consider a beam with length-to-thickness ratio L/h = 10, comprising Nl variable-stiffness composite layers. The

beam, aligned with the Cartesian y-axis, is clamped at both ends y = 0 and y = L and is assumed to undergo static

deformations in plane strain under a uniformly distributed load equally divided between the top and the bottom surfaces

Pt
z = Pb

z = −q0/2, as shown in Figure 4. In this work, laminates with linear fiber angle variation along the beam axis

and constant stiffness properties across the width are considered. The angle variation along the spanwise direction y of

each ply k is defined using the notation of Gürdal and Olmedo [43],

θ(k)(y) =
2(T (k)1 − T (k)0 )

L

��� y − L
2

��� +T (k)0 , (39)

where θ(k)(y) is the local fiber angle at co-ordinate y, and T (k)0 and T (k)1 , written as 〈T (k)0 |T
(k)
1 〉, are the fiber angles at the

beam midspan, y = L/2, and ends, y = 0, L, respectively. Hence, the fiber angle in each ply takes the value T (k)1 at one

end of the beam, is steered to T (k)0 at the mid-span and then returns to T (k)1 at the other end of the beam.
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(a) Lam A: σ̄yy at y = L/2 (b) Lam B: σ̄yy at y = L/2

(c) Lam A: τ̄yz at y = 0 (d) Lam B: τ̄yz at y = 0

(e) Lam A: σ̄zz at y = L/2 (f) Lam B: σ̄zz at y = L/2

Fig. 3 Through-thickness distribution of the normalized axial, transverse shear and transverse normal stresses
for laminates A and B.
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Fig. 4 Representation of a multilayered beam clamped at both the ends subjected to a uniformly distributed
load on the top and the bottom surfaces.

Table 3 Stacking sequence for variable-stiffness laminates considered in the present study. Subscripts indicate
the repetition of a property over the corresponding number of layers.

Laminate Layer thickness ratio Material Stacking sequence 〈T0 |T1〉

VS Lam C [(1/8)8] [IM78] [〈90|0〉/〈−90|0〉/〈45|-45〉/〈−45|45〉]s

VS Lam D [(1/12)4/(1/3)/(1/12)4] [p4/pvc/p4]
[〈0|90〉/〈90|0〉/〈0|−90〉/〈−90|0〉/...
0/〈−90|0〉/〈0|−90〉/〈90|0〉/〈0|90〉]

VS Lam E [(1/8)2/0.5/(1/8)2] [p2/pvc/p2] [〈45|−45〉/〈−45|45〉/0/〈−45|45〉/〈45|−45〉]

VS Lam F [(1/12)4/(1/3)/(1/12)4] [p4/pvc/p4]
[〈20|−60〉/〈−20|60〉/〈45|−45〉/〈−45|45〉/...

0/0/90/〈35|−35〉/〈−35|35〉]

The static analysis of VS beams C-F are performed using the LW and ESL theories within the UF-SLE model.

The number of beam and cross-section elements, and the order of expansion function employed for each case is given

in Table 4. To the authors’ knowledge there are no 3D closed form solutions for variable-stiffness beams in bending.

Therefore, the stress results obtained are verified against 3D Finite Element (FE) solutions, as given in Chapter 6 of [33],

obtained using the commercial software package Abaqus. The 3D FE benchmark model in Abaqus featured a 250 mm

long, 1000 mm wide and 25 mm thick plate that was meshed using a total of 95,880 linear C3D8R elements with 799

elements along the length, 120 elements throught the thickness, and a single element across the width. Figures 5 and 6

show through-thickness plots of in-plane normal stress σ̄yy at the mid-span of the beam, transverse shear stress τ̄yz at

the quarter-span of the beam and transverse normal stress σ̄zz at the mid-span of the beam for VS laminates C-F.

From these plots, it is evident that the stress distribution obtained using the LW approach is in excellent agreement

with the 3D FE solution. The axial normal σ̄yy and transverse shear τ̄yz stress distribution obtained using the ESL

model (UF-MZZF) correlates well with 3D FE for VS laminates C, D and E, whereas for the arbitrary sandwich beam,

VS laminate F, significant differences are observed (Figures 6b and 6d). These differences show the inability of MZZF

in capturing the zig-zag effect accurately for highly heterogeneous sandwich beams. In contrast, the UF-RZT model

predicts the stress response accurately for all variable-stiffness laminates considered herein and results are in close

agreement with 3D FE solutions. However, from the transverse normal stress σ̄zz plots, it seems that both ZZ models are
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unable to capture the thickness stretching effect for VS laminates C, E and F. The reason for this disparity is the presence

of an absolute value in the function used to describe the fiber orientation (Eq. (39)), which leads to a discontinuity in

fiber angle slope and curvature. This discontinuity, in turn, results in a continuous but non-differentiable distribution

of transverse shear stress τ̄yz at the mid-span. Thus, the UF-MZZF and the UF-RZT models predict an incorrect

σ̄zz distribution as it is recovered from Cauchy’s equilibrium equation, described in Section IIE. On the other hand,

the UF-LW model is able to predict the transverse stress results accurately as these are computed directly from the

underlying constitutive equations. For VS laminate D, since all layers have fiber orientation angle (T0) value at the

mid-span with either 0◦ or 90◦, the transverse shear stress distribution is continuous and differentiable, and therefore,

the transverse normal stress correlates well for all models as shown in Figure 5f. The reader is referred to the authors’

previous work [35] for more insight on these intricacies in modeling variable-stiffness laminates.

To check the applicability of proposed models (UF-MZZF and UF-RZT) at locations along the beam other than the

fiber angle singularity (mid-span in the present case), through-thickness distributions of σ̄yy , τ̄yz and σ̄zz are plotted at

y = 0.1L and 0.2L, for VS laminates C, E and F, in Figures 7 to 9. It can be clearly seen that the results obtained using

the UF-RZT model is in excellent agreement with the UF-LW model for all the VS laminates, even near the boundary.

The UF-MZZF model is accurate for VS laminates C and E, but fails to capture the zig-zag effect and a reversal in

transverse shear stress profile intensified by the clamped support condition in VS sandwich laminate F. Furthermore, it

is to be noted that this is the first time that RZT is used within a hierarchical displacement-based model to analyze

variable-stiffness beams. Previously, Groh and Weaver [33] used the RZT ZZ function within the Hellinger-Reissner

mixed formulation to model variable-stiffness beams. It was observed that due to the dependence of the RZT ZZ

function on transverse shear rigidities, the ZZ effect can vanish in some areas of the beam and this vanishing ZZ

effect leads to numerical instabilities in the model. This is not the case with the present Serendipity Lagrange finite

element model because, in contrast to the work by Groh &Weaver, the mathematical domain is decomposed into smaller

subdomains with local support (finite elements) rather than one domain with global support. Moreover, the UF-SLE

ESL approach is computationally more efficient than the 3D FE and the UF-LW model, as shown in Table 4. However,

the UF-LW model can be a viable alternative in cases where 3D Finite Element (FE) analysis is required due to the

presence of very localized stress gradients or layer-wise boundary conditions.

IV. Conclusion
In the authors’ previous work [35, 40], the displacement-based Unified Formulation model, based on the hierarchical

Serendipity Lagrange Expansion finite element (UF-SLE), was used to derive a Layer-Wise model for constant- and

variable-stiffness beams. In this work, to reduce the computational expense, an Equivalent Single Layer approach is

implemented within the UF-SLE framework. To account for the ZZ effect, Murakami’s Zig-Zag Function (MZZF) and

Refined Zig-Zag Theory (RZT) functions are used to model constant- and variable-stiffness laminated and sandwich
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(a) VS Lam C: σ̄yy at y = L/2 (b) VS Lam D: σ̄yy at y = L/2

(c) VS Lam C: τ̄yz at y = L/4 (d) VS Lam D: τ̄yz at y = L/4

(e) VS Lam C: σ̄zz at y = L/2 (f) VS Lam D: σ̄zz at y = L/2

Fig. 5 Through-thickness distribution of the normalized axial and transverse shear stresses for variable-
stiffness laminates C.
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(a) VS Lam E: σ̄yy at y = L/2 (b) VS Lam F: σ̄yy at y = L/2

(c) VS Lam E: τ̄yz at y = L/4 (d) VS Lam F: τ̄yz at y = L/4

(e) VS Lam E: σ̄zz at y = L/2 (f) VS Lam F: σ̄zz at y = L/2

Fig. 6 Through-thickness distribution of the normalized axial and transverse shear stresses for variable-
stiffness laminates E.
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Table 4 Comparison of number of beam elements (Y ), Serendipity Lagrange (SL) cross-section elements (Z),
expansion order (N), DOFs (n) and computational complexities (O) associated with each model.

Model Y B4 Z SLN DOFs Time∗ Space∗ Y B4 Z SLN DOFs Time Space
n ∼O(n2) ∼O(nb∗∗) n ∼O(n2) ∼O(nb)

Lam A Lam B

UF-LW 30 B4 5 SL5 24,843 108 107 30 B4 7 SL5 34,125 109 107

UF-MZZF 30 B4 1 SL5 6,825 107 106 30 B4 1 SL5 6,825 107 106

UF-RZT 30 B4 1 SL5 6,825 107 106 30 B4 1 SL5 6,825 107 106

VS Lam C VS Lam D

3D FE [33] - - 580,800 1011 107 - - 580,800 1011 107

UF-LW 40 B4 8 SL4 36,663 109 107 40 B4 9 SL4 41,019 109 107

UF-MZZF 50 B4 1 SL5 10,721 108 106 40 B4 1 SL5 8,591 107 106

UF-RZT 50 B4 1 SL5 10,721 108 106 40 B4 1 SL5 8,591 107 106

VS Lam E VS Lam F

3D FE [33] - - 580,800 1011 107 - - 580,800 1011 107

UF-LW 40 B4 5 SL4 23,595 108 107 40 B4 9 SL4 41,019 109 107

UF-MZZF 50 B4 1 SL5 10,721 108 106 70 B4 1 SL6 19,412 108 106

UF-RZT 50 B4 1 SL5 10,721 108 106 70 B4 1 SL6 19,412 108 106

∗Time and space complexities associated with a pre-conditioner conjugate gradient algorithm (iterative solver) [40, 44].
∗∗b denotes the bandwidth of a matrix.

22



(a) VS Lam C: σ̄yy at y = 0.1L (b) VS Lam C: σ̄yy at y = 0.2L

(c) VS Lam C: τ̄yz at y = 0.1L (d) VS Lam C: τ̄yz at y = 0.2L

(e) VS Lam C: σ̄zz at y = 0.1L (f) VS Lam C: σ̄zz at y = 0.2L

Fig. 7 Through-thickness distribution of the normalized axial and transverse stresses, at 10% and 20% of the
beam length from the clamped end, for variable-stiffness laminate C.

23



(a) VS Lam E: σ̄yy at y = 0.1L (b) VS Lam E: σ̄yy at y = 0.2L

(c) VS Lam E: τ̄yz at y = 0.1L (d) VS Lam E: τ̄yz at y = 0.2L

(e) VS Lam E: σ̄zz at y = 0.1L (f) VS Lam E: σ̄zz at y = 0.2L

Fig. 8 Through-thickness distribution of the normalized axial and transverse stresses, at 10% and 20% of the
beam length from the clamped end, for variable-stiffness laminate E.
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(a) VS Lam F: σ̄yy at y = 0.1L (b) VS Lam F: σ̄yy at y = 0.2L

(c) VS Lam F: τ̄yz at y = 0.1L (d) VS Lam F: τ̄yz at y = 0.2L

(e) VS Lam F: σ̄zz at y = 0.1L (f) VS Lam F: σ̄zz at y = 0.2L

Fig. 9 Through-thickness distribution of the normalized axial and transverse stresses, at 10% and 20% of the
beam length from the clamped end, for variable-stiffness laminate F.
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beams. The continuous distribution of transverse stresses across the layers is obtained a posteriori by integrating the

in-plane stresses in Cauchy’s 3D indefinite equilibrium equations. The UF-MZZF model is shown to be insufficient in

capturing the stress response accurately for highly heterogeneous sandwich beams. On the other hand, the UF-RZT

model predicts the three-dimensional (3D) stress response accurately for all cases considered herein, and is shown to be

more computationally efficient than the UF-SLE layer-wise model (UF-LW) and the 3D finite element (FE) model. Thus,

the combination of accuracy and computational expense makes this approach an attractive basis for industrial design

tools. However, the UF-LW model is still preferred over the UF-RZT model in the presence of localized stress gradients

or mathematical singularities in the constitutive relations, which can be observed for variable-stiffness composites.
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