92 research outputs found

    Good agreement of conventional and gel-based direct agglutination test in immune-mediated haemolytic anaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to compare a gel-based test with the traditional direct agglutination test (DAT) for the diagnosis of immune-mediated haemolytic anaemia (IMHA).</p> <p>Methods</p> <p>Canine (n = 247) and feline (n = 74) blood samples were submitted for DAT testing to two laboratories. A subset of canine samples was categorized as having idiopathic IMHA, secondary IMHA, or no IMHA.</p> <p>Results</p> <p>The kappa values for agreement between the tests were in one laboratory 0.86 for canine and 0.58 for feline samples, and in the other 0.48 for canine samples. The lower agreement in the second laboratory was caused by a high number of positive canine DATs for which the gel test was negative. This group included significantly more dogs with secondary IMHA.</p> <p>Conclusions</p> <p>The gel test might be used as a screening test for idiopathic IMHA and is less often positive in secondary IMHA than the DAT.</p

    Characterization of Microbialites and Microbial Mats of the Laguna Negra Hypersaline Lake (Puna of Catamarca, Argentina)

    Get PDF
    Microbial carbonates provide an invaluable tool to understand biogeochemical processes in aqueous systems, especially in lacustrine and marine environments. Lakes are strongly sensitive to climatically driven environmental changes, and microbialites have recently been shown to provide a record of these changes. Unraveling physicochemical and microbiological controls on carbonates textures and geochemistry is necessary to correctly interpret these signals and the microbial biosphere record within sedimentary carbonates. The Laguna Negra is a high-altitude hypersaline Andean lake (Puna of Catamarca, Argentina), where abundant carbonate precipitation takes place and makes this system an interesting example that preserves a spectrum of carbonate fabrics reflecting complex physical, chemical, and biological interactions. The extreme environmental conditions (high UV radiation, elevated salinity, and temperature extremes) make the Laguna Negra a good analogue to some Precambrian microbialites (e.g., Tumbiana Fm., Archean, Australia). In addition, the discovery of ancient evaporating playa-lake systems on Mars’ surface (e.g., ShalbatanaVallis, Noachian, Mars) highlights the potential of Laguna Negra to provide insight into biosignature preservation in similar environments, in both terrestrial and extraterrestrial settings, given that microbial processes in the Laguna Negra can be studied with remarkable detail.Fil: Boidi, Flavia Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Mlewski, Estela Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gomez, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gérard, Emmanuelle. Centre National de la Recherche Scientifique; Franci

    "Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt <it>Pyura stolonifera</it>, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.</p> <p>Results</p> <p>Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within <it>Pyura stolonifera </it>in the different coastal communities they dominate.</p> <p>Conclusions</p> <p>This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.</p

    TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet

    Get PDF
    The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (~1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 ± 0.08 R⊕ and a mass of 7.251.12+1.19{7.25}_{-1.12}^{+1.19} M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm−3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap" and the "hot Neptune desert," HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition

    Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4

    Get PDF
    Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional condi- tions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho- PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein syn- thesis in skeletal muscle in part by induction of ER stress

    Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56335, doi:10.1371/journal.pone.0056335.The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.This work was performed with funding from the Center for Dark Energy Biosphere Investigations (C-DEBI) to William Orsi (OCE-0939564) and The Ocean Life Institute (WHOI) to Virginia Edgcomb (OLI-27071359)

    Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel

    Get PDF
    Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across > 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) [UID/Multi/04326/2013, IF/01413/2014/CP1217/CT0004]; South African Research Chairs Initiative (SARChI) of the Department of Science and Technology; National Research Foundation; South African National Research Foundation (NRF); Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/85040/2012, SFRH/BPD/111003/2015]info:eu-repo/semantics/publishedVersio

    The Multiplanet System TOI-421*: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary*

    Get PDF
    We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of Pb = 5.19672 ± 0.00049 days, a mass of Mb = 7.17 ± 0.66 M⊕, and a radius of Rb = 2.680.18+0.19{2.68}_{-0.18}^{+0.19} R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of Mc = 16.421.04+1.06{16.42}_{-1.04}^{+1.06} M⊕, a radius of Rc = 5.090.15+0.16{5.09}_{-0.15}^{+0.16} R⊕, and a density of ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3. With its characteristics, the outer planet (ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed

    Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress

    Get PDF
    Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy
    corecore