165 research outputs found

    Welcome to the University Libraries Poster Session!

    Full text link
    Over the past eight years, the UNLV Libraries have led and contributed to campus initiatives to revise the undergraduate curriculum and student learning outcomes at UNLV. Through formal and informal leadership roles, librarians helped to create the University Undergraduate Learning Outcomes (UULOs) in the areas of Intellectual Breadth and Lifelong Learning, Communication, Inquiry and Critical Thinking, Global/Multicultural Knowledge and Awareness, and Citizenship and Ethics and a revised model for general education. In Fall 2011, the Faculty Senate approved a vertical pathway of key courses, which serve to integrate and assess the UULOs from a student’s first year of college through graduation . The Libraries have partnered to implement this model through faculty development initiatives, design of assignments to teach and assess the inquiry and critical thinking UULO, and curriculum mapping in academic programs. In addition, the creation of co-curricular programs, such as a workshop program for Libraries student employees, and the updating of our teaching and learning spaces underscore our important role as partners in education at UNLV

    The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core

    Get PDF
    The sensory properties of a reward-paired cue (a Conditioned Stimulus; CS) may impact the motivational value attributed to the cue, and in turn influence the form of the conditioned response (CR) that develops. A cue with multiple sensory qualities, such as a moving lever-CS, may activate numerous neural pathways that process auditory and visual information, resulting in CRs that vary both within and between individuals. For example, CRs include approach to the lever-CS itself (rats that “sign-track;” ST), approach to the location of reward delivery (rats that “goal-track;” GT), or an “intermediate” combination of these behaviors. We found that the multimodal sensory features of the lever-CS were important to the development and expression of sign-tracking. When the lever-CS was covered, and thus could only be heard moving, STs continued to approach the lever location, but also started to approach the food cup during the CS period. While still predictive of reward, the auditory component of the lever-CS was a much weaker conditioned reinforcer than the visible lever-CS. This plasticity in behavioral responding observed in STs closely resembled behaviors normally seen in rats classified as “intermediates.” Furthermore, the ability of both the lever-CS and reward-delivery to evoke dopamine release in the nucleus accumbens was also altered by covering the lever – dopamine signaling in STs resembled neurotransmission observed in rats that normally only GT. These data suggest that while the visible lever-CS was attractive, wanted, and had incentive value for STs, when presented in isolation the auditory component of the cue was simply predictive of reward, lacking incentive salience. Therefore, the specific sensory features of cues may differentially contribute to responding and ensure behavioral flexibility

    Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues

    Get PDF
    Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect mRNA expression of hundreds of putative myokines that may underlie the endocrine functions of skeletal muscle. We identify candidate genes that may drive tissue specialization, including Smarca4, Vegfa, and Myostatin. By demonstrating the intrinsic diversity of skeletal muscles, these data provide a resource for studying the mechanisms of tissue specialization

    The relationship between mosquito abundance and rice field density in the Republic of Korea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is endemic to the Republic of Korea (ROK) where unvaccinated United States (U.S.) military Service members, civilians and family members are stationed. The primary vector of the JEV in the ROK is <it>Culex tritaeniorhynchus</it>. The ecological relationship between <it>Culex </it>spp. and rice fields has been studied extensively; rice fields have been shown to increase the prevalence of <it>Cx. tritaeniorhynchus</it>. This research was conducted to determine if the quantification of rice field land cover surrounding U.S. military installations in the ROK should be used as a parameter in a larger risk model that predicts the abundance of <it>Cx. tritaeniorhynchus </it>populations.</p> <p>Mosquito data from the U.S. Forces Korea (USFK) mosquito surveillance program were used in this project. The average number of female <it>Cx. tritaeniorhynchus </it>collected per trap night for the months of August and September, 2002-2008, was calculated. Rice fields were manually digitized inside 1.5 km buffer zones surrounding U.S. military installations on high-resolution satellite images, and the proportion of rice fields was calculated for each buffer zone.</p> <p>Results</p> <p>Mosquito data collected from seventeen sample sites were analyzed for an association with the proportion of rice field land cover. Results demonstrated that the linear relationship between the proportion of rice fields and mosquito abundance was statistically significant (R<sup>2 </sup>= 0.62, r = .79, F = 22.72, p < 0.001).</p> <p>Conclusions</p> <p>The analysis presented shows a statistically significant linear relationship between the two parameters, proportion of rice field land cover and log<sub>10 </sub>of the average number of <it>Cx. tritaeniorhynchus </it>collected per trap night. The findings confirm that agricultural land cover should be included in future studies to develop JE risk prediction models for non-indigenous personnel living at military installations in the ROK.</p

    Dust in Comet C/2007 N3 (Lulin)

    Full text link
    We report optical imaging, optical and near-infrared polarimetry, and Spitzer mid-infrared spectroscopy of comet C/2007 N3 (Lulin). Polarimetric observations were obtained in R (0.676 micron) at phase angles from 0.44 degrees to 21 degrees with simultaneous observations in H (1.65 micron) at 4.0 degrees, exploring the negative branch in polarization. Comet C/2007 N3 (Lulin) shows typical negative polarization in the optical as well as a similar negative branch near-infrared wavelengths. The 10 micron silicate feature is only weakly in emission and according to our thermal models, is consistent with emission from a mixture of silicate and carbon material. We argue that large, low-porosity (akin to Ballistic Particle Cluster Aggregates) rather absorbing aggregate dust particles best explain both the polarimetric and the mid-infrared spectral energy distribution.Comment: 18 pages, 9 figures, 3 table

    Chronic Ethanol Consumption Alters Glucocorticoid Receptor Isoform Expression in Stress Neurocircuits and Mesocorticolimbic Brain Regions of Alcohol-Preferring Rats

    Get PDF
    Evidence suggests the hypothalamic-pituitary-adrenal (HPA) axis is involved in Alcohol Use Disorders (AUDs), which might be mediated by an imbalance of glucocorticoid receptor (GR), GRα and GRβ, activity. GRβ antagonizes the GRα isoform to cause glucocorticoid (GC) resistance. In the present study, we aimed to investigate the effects of chronic continuous free-choice access to ethanol on GR isoform expression in subregions of the mesocorticolimbic reward circuit. Adult male alcohol-preferring (P) rats had concurrent access to 15% and 30% ethanol solutions, with ad lib access to lab chow and water, for six weeks. Quantitative Real-time PCR (RT-PCR) analysis showed that chronic ethanol consumption reduced GRα expression in the nucleus accumbens shell (NAcsh) and hippocampus, whereas ethanol drinking reduced GRβ in the nucleus accumbens core (NAcc), prefrontal cortex (PFC), and hippocampus. An inhibitor of GRα, microRNA-124-3p (miR124-3p) was significantly higher in the NAcsh, and GC-induced gene, GILZ, as a measure of GC-responsiveness, was significantly lower. These were not changed in the NAcc. Likewise, genes associated with HPA axis activity were not significantly changed by ethanol drinking [i.e., corticotrophin-releasing hormone (Crh), adrenocorticotrophic hormone (Acth), and proopiomelanocortin (Pomc)] in these brain regions. Serum corticosterone levels were not changed by ethanol drinking. These data indicate that the expression of GRα and GRβ isoforms are differentially affected by ethanol drinking despite HPA-associated peptides remaining unchanged, at least at the time of tissue harvesting. Moreover, the results suggest that GR changes may stem from ethanol-induced GC-resistance in the NAcsh. These findings confirm a role for stress in high ethanol drinking, with GRα and GRβ implicated as targets for the treatment of AUDs

    TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis

    Get PDF
    Multicellular organisms must have complex immune systems to detect and defeat pathogens. Plants rely on nucleotide binding site leucine rich repeat (NLR) intracellular receptors to detect pathogens. For hundreds of years, plant breeders have selected for disease-resistance traits derived from NLR genes. Despite the molecular cloning of the first NLRs more than 20 y ago, we still do not understand how these sensors function at a mechanistic level. Here, we identified a truncated NLR protein that activates cell death in response to a specific pathogen effector. Understanding how truncated NLRs function will provide a better mechanistic understanding of the plant immune system and an expanded toolkit with which to engineer disease resistance rationally in crops

    Transcription Factors in Light and Circadian Clock Signaling Networks Revealed by Genomewide Mapping of Direct Targets for Neurospora White Collar Complex

    Get PDF
    Light signaling pathways and circadian clocks are inextricably linked and have profound effects on behavior in most organisms. Here, we used chromatin immunoprecipitation (ChIP) sequencing to uncover direct targets of the Neurospora crassa circadian regulator White Collar Complex (WCC). The WCC is a blue-light receptor and the key transcription factor of the circadian oscillator. It controls a transcriptional network that regulates ∼20% of all genes, generating daily rhythms and responses to light. We found that in response to light, WCC binds to hundreds of genomic regions, including the promoters of previously identified clock- and light-regulated genes. We show that WCC directly controls the expression of 24 transcription factor genes, including the clock-controlled adv-1 gene, which controls a circadian output pathway required for daily rhythms in development. Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways

    Capabilities, Performance, and Status of the SOFIA Science Instrument Suite

    Get PDF
    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 540 m imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60240 m, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.31.1 m imager, developed at Lowell Observatory. FLITECAM is a 15 m wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42210 m integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 528 m high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50240 m imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore