97 research outputs found

    Developing Stochastic Models for Spatial Inference: Bacterial Chemotaxis

    Get PDF
    Background: Biological systems are inherently inhomogeneous and spatial effects play a significant role in processes such as pattern formation. At the cellular level proteins are often localised either through static attachment or via a dynamic equilibrium. As well as spatial heterogeneity many cellular processes exhibit stochastic fluctuations and so to make inferences about the location of molecules there is a need for spatial stochastic models. A test case for spatial models has been bacterial chemotaxis which has been studied extensively as a model of signal transduction. Results: By creating specific models of a cellular system that incorporate the spatial distributions of molecules we have shown how the fit between simulated and experimental data can be used to make inferences about localisation, in the case of bacterial chemotaxis. This method allows the robust comparison of different spatial models through alternative model parameterisations. Conclusions: By using detailed statistical analysis we can reliably infer the parameters for the spatial models, and also to evaluate alternative models. The statistical methods employed in this case are particularly powerful as they reduce the need for a large number of simulation replicates. The technique is also particularly useful when only limited molecular level data is available or where molecular data is not quantitative

    Three Level Thoracolumbar Spondylectomy for Recurrent Giant Cell Tumour of the Spine: A Case Report

    Get PDF
    Giant cell tumour (GCT) is a benign tumour but can be locally aggressive and with the potential to metastasise especially to the lungs. Successful treatments have been reported for long bone lesions; however, optimal surgical and medical treatment for spinal and sacral lesions are not well established. In treating spinal GCTs, the aim is to achieve complete tumour excision, restore spinal stability and decompress the neural tissues. The ideal surgical procedure is an en bloc spondylectomy or vertebrectomy, where all tumour cells are removed as recurrence is closely related to the extent of initial surgical excision. However, such a surgery has a high complication rate, such as dura tear and massive blood loss. We report a patient with a missed pathological fracture of T12 treated initially with a posterior subtraction osteotomy, who had recurrence three years after the index surgery and subsequently underwent a three level vertebrectomy and posterior spinal fusion

    Nivolumab in Advanced Hepatocellular Carcinoma: Safety Profile and Select Treatment-Related Adverse Events From the CheckMate 040 Study

    Get PDF
    Background. CheckMate 040 assessed the efficacy and safety of nivolumab in patients with advanced hepatocellular carcinoma (HCC). Understanding the safety profile of nivolumab is needed to support the management of treatment-related adverse events (TRAEs). This analysis assessed the safety of nivolumab monotherapy in the phase I/II, open-label CheckMate 040 study. Materials and Methods. Select TRAEs (sTRAEs; TRAEs with potential immunologic etiology requiring more frequent monitoring) occurring between first dose and 30 days after last dose were analyzed in patients in the dose-escalation and -expansion phases. Time to onset (TTO), time to resolution (TTR), and recurrence of sTRAEs were assessed, and the outcome of treatment with immune-modulating medication (IMM) was evaluated. Results. The analysis included 262 patients. The most common sTRAE was skin (35.5%), followed by gastrointestinal (14.5%) and hepatic (14.1%) events; the majority were grade 1/2, with 10.7% of patients experiencing grade 3/4 events. One patient had grade 5 pneumonitis. Median (range) TTO ranged from 3.6 (0.1–59.9) weeks for skin sTRAEs to 47.6 (47.1–48.0) weeks for renal sTRAEs. Overall, 68% of sTRAEs resolved, with median (range) TTR ranging from 3.7 (0.1–123.3+) weeks for gastrointestinal sTRAEs to 28.4 (0.1–79.1) weeks for endocrine sTRAEs. Most gastrointestinal and all hepatic events resolved with treatment in accordance with established toxicity management algorithms. In 57 patients (40%), sTRAEs were managed with IMM. Reoccurrence of sTRAEs was uncommon following rechallenge with nivolumab. Conclusion. Nivolumab demonstrated a manageable safety profile in this analysis of patients with advanced HCC. A majority of sTRAEs resolved with treatment

    Population differences in associations of serotonin transporter promoter polymorphism (5HTTLPR) di- and triallelic genotypes with blood pressure and hypertension prevalence

    Get PDF
    Based on prior research finding the 5HTTLPR L allele associated with increased cardiovascular reactivity to laboratory stressors and increased risk of myocardial infarction, we hypothesized that the 5HTTLPR L allele will be associated with increased blood pressure (BP) and increased hypertension prevalence in 2 large nationally representative samples in the United States and Singapore. Methods Logistic regression and linear models tested associations between triallelic (L′S′, based on rs25531) 5HTTLPR genotypes and hypertension severity and mean systolic and diastolic blood pressure (SBP and DBP) collected during the Wave IV survey of the National Longitudinal Study of Adolescent to Adult Health (Add Health, N = 11,815) in 2008–09 and during 2004–07 in 4196 Singaporeans. Results In US Whites, L′ allele carriers had higher SBP (0.9 mm Hg, 95% CI = 0.26-1.56) and greater odds (OR = 1.23, 95% CI = 1.10-1.38) of more severe hypertension than those with S′S′ genotypes. In African Americans, L′ carriers had lower mean SBP (−1.27 mm Hg, 95% CI = −2.53 to −0.01) and lower odds (OR = 0.78, 95% CI = 0.65-0.94) of more severe hypertension than those with the S′S′ genotype. In African Americans, those with L′L′ genotypes had lower DBP (−1.13 mm Hg, 95% CI = −2.09 to −0.16) than S′ carriers. In Native Americans, L′ carriers had lower SBP (−6.05 mm Hg, 95% CI = −9.59 to −2.51) and lower odds of hypertension (OR = 0.34, 95% CI = 0.13-0.89) than those with the S′S′ genotype. In Asian/Pacific Islanders those carrying the L′ allele had lower DBP (−1.77 mm Hg, 95% CI = −3.16 to −0.38) and lower odds of hypertension (OR = 0.68, 95% CI = 0.48-0.96) than those with S′S′. In the Singapore sample S′ carriers had higher SBP (3.02 mm Hg, 95% CI = 0.54-5.51) and DBP (1.90 mm Hg, 95% CI = 0.49-3.31) than those with the L′L′ genotype. Conclusions These findings suggest that Whites carrying the L′ allele, African Americans and Native Americans with the S′S′ genotype, and Asians carrying the S′ allele will be found to be at higher risk of developing cardiovascular disease and may benefit from preventive measures

    Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania

    Get PDF
    The human genetic factors that affect resistance to infectious disease are poorly understood. Here we report a genome-wide association study in 17,000 severe malaria cases and population controls from 11 countries, informed by sequencing of family trios and by direct typing of candidate loci in an additional 15,000 samples. We identify five replicable associations with genome-wide levels of evidence including a newly implicated variant on chromosome 6. Jointly, these variants account for around one-tenth of the heritability of severe malaria, which we estimate as -23% using genome-wide genotypes. We interrogate available functional data and discover an erythroid-specific transcription start site underlying the known association in ATP2B4, but are unable to identify a likely causal mechanism at the chromosome 6 locus. Previously reported HLA associations do not replicate in these samples. This large dataset will provide a foundation for further research on thegenetic determinants of malaria resistance in diverse populations.Peer reviewe

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 &times; 10-11 to 5.0 &times; 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 &times; 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
    corecore