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Abstract

Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide
association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic
architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including
4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453
individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and
late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported
association of variants at the complement factor H (CFH) (peak P = 1.5610231) and age-related maculopathy susceptibility 2
(ARMS2) (P = 4.3610224) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.161026) associated
with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene
GLI3 (rs2049622; P = 8.961026) and upstream of GLI2 (rs6721654; P = 6.561026), encoding retinal Sonic hedgehog signalling
regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.561026), involved in melanin biosynthesis. For a range of
published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the
involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early
AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including
pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration,
generating hypotheses for further investigation.
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Introduction

Age-related macular degeneration (AMD) is the most common

cause of irreversible blindness in the elderly in many countries [1].

Clinically, the disease is believed to develop via a series of

progressive stages [2]. Early AMD is characterised by abnormal-

ities in the retinal pigment epithelium (RPE) and the deposition of

small extracellular deposits, called drusen, between Bruch’s

membrane and the RPE [3]. As the disease progresses, large

drusen (.125 mm in diameter) with or without fuzzy edges (soft

indistinct or distinct drusen) may slowly disappear and be replaced

by regions of retinal depigmentation (decreased pigment). Retic-

ular drusen and large, soft drusen involving a large area of the

macula are strong indicators of increased risk of progression to

late, vision-impairing forms of this disease [4]. The two main

phenotypes of late AMD are exudative AMD and geographic

atrophy (GA). Exudative AMD is typified by sub-retinal neovas-

cularisation with sensory retinal and/or RPE detachment, sub-

retinal and/or sub-RPE haemorrhage followed by sub-retinal

scarring. GA involves gradual degeneration and disappearance of

RPE and photoreceptor cells within the macular area [3].

AMD is known to result from a complex interplay of multiple

environmental and genetic factors. Disease risk increases strongly

with age, with additional risk factors including smoking, possibly

high body mass index, hypertension and cardiovascular disease

[5,6]. However, genetic factors have been shown to be strongly

associated with AMD risk, with an increased genetic burden

associated particularly with late forms of the disease [7]. For

example, heritability estimates from twin studies are 0.45 for early

AMD [8], but 0.71 for late AMD [9].

Case-control genome-wide association studies (GWAS) of late

AMD have provided evidence for individual, large-effect risk

variants in the CFH, ARMS2, C2/CFB and C3 genes (estimated per

allele odds ratios ranging from 1.7–4.5), and for additional,

smaller-effect variants in CFI, FRK/COL10A1, TNFRSF10A, LIPC,

CETP, TIMP3, REST and VEGFA (odds ratios ranging from 1.15–

1.4) [10,11,12,13,14,15]. Together with biological evidence, these

findings highlight the importance of immune, inflammatory and

lipid metabolic pathways in late AMD pathogenesis, while also

implicating angiogenic, apoptotic, extracellular-matrix remodel-

ling and melanosome trafficking processes [10,11,12,13,14,15].

The vast majority of published GWAS have been conducted in

samples of either exclusively or predominant late AMD cases

(particularly late exudative AMD). This likely reflects the tendency

for only symptomatic, late AMD cases to attend clinics, thus

forming the majority of ascertained AMD samples available. In

contrast, persons with early AMD are usually asymptomatic and

less likely to be seen except in population-based studies. Therefore

the genetic architecture of early AMD has been relatively under

researched and is poorly understood [16].

Genome-Wide Association Meta-Analysis of Early AMD
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Given the substantial heritability of AMD and the knowledge of

modifiable risk factors that may reduce risk of progression to late,

vision-impairing forms of this disease, improved understanding of

the genetic architecture of early AMD may also be important.

With this aim, we conducted a GWAS meta-analysis of early

AMD, including approximately 4,000 well-characterised early

AMD cases and 20,000 strictly defined controls without any

drusen or with hard drusen only. Using a small set of mutually

exclusive, late AMD cases, we also compared genetic effect sizes at

validated AMD risk loci between early and late stages of the

disease, to determine their relative importance for different disease

stages. This study amalgamates a number of large population-

based cohorts with GWAS data and AMD grading from retinal

photographs.

Materials and Methods

Study Populations
The primary GWAS meta-analysis for early AMD was

conducted in five European-ancestry cross-sectional cohorts

(Table 1). These were recruited in the USA, Europe and Australia

and contributed a total of 3,772 prevalent cases of early AMD and

16,033 contemporaneous controls from the Age, Gene/Environ-

ment Susceptibility-Reykjavik Study (AGES) [17], the Atheroscle-

rosis Risk in Communities (ARIC) study [18], the Cardiovascular

Health Study (CHS) [19], the Blue Mountains Eye Study (BMES)

[20] and three distinct cohorts from the Rotterdam Study (RS)

[21]: RS-I, RS-II and RS-III. In addition, two Asian-ancestry

cross-sectional cohorts were included in secondary analyses; these

included a total 264 prevalent early AMD cases and 3,926 controls

from the Singapore Indian Eye Study (SINDI) [22] and the

Singapore Malay Eye Study (SiMES) [23]. Subsequent candidate

SNP meta-analyses for late AMD were performed in the

European-ancestry cohorts including a total 498 prevalent cases

of late AMD and 16,033 controls.

Each cohort obtained approval from relevant institutional

review boards, and all participants provided written informed

consent in accordance with the Declaration of Helsinki. All

participating studies approved guidelines for collaboration, and a

working group agreed, in advance, on phenotype definition,

covariate selection and analytic plans for within-study analyses and

meta-analyses of results. Details of each participating study are

described below and in Tables S1, S2 in File S2.

Phenotype Definitions
The same AMD phenotype definitions based on photographic

grading were used for all the cohorts. Early AMD was defined as

the presence of soft drusen (.63 mm) alone, retinal pigment

epithelium (RPE) depigmentation alone or a combination of soft

drusen with increased retinal pigment and/or depigmentation in

the absence of late AMD. Late AMD was defined as the presence

of exudative AMD or GA, as described in the International AMD

classification [24]. Controls had no soft (distinct or indistinct)

drusen or retinal pigment abnormalities (either depigmentation or

increased pigment), and no signs of early or late AMD; controls

were permitted to have hard drusen. Presence and severity of

AMD lesions were assigned following the Wisconsin Age-Related

Maculopathy grading system [25], based on masked assessment of

fundus photographs. For the AGES, BMES, RS and Singapore-

based cohorts, photographs were examined for both eyes using a

retinal camera with pharmacological mydriasis, with cases

satisfying AMD diagnostic criteria for at least one eye. For the

ARIC and CHS cohorts, case and control diagnoses were based

on examination of one, randomly selected eye using a retinal

camera without mydriasis. Additional details are provided in

Table S1 in File S2.

Genotyping
The AGES and CHS samples were genotyped using the

Illumina Human370 CNV quad array. The ARIC sample was

genotyped using the Affymetrix SNP 6.0 GeneChip. The RS-I

sample was genotyped using the Illumina Infinium II Human-

Hap550 chip. The RS-II, RS-III, SiMES and SINDI samples

were genotyped using the Illumina Human610-Quad array. The

BMES sample was genotyped using the Illumina Human670-

Quad v1 custom array. All cohorts applied similar quality control

(QC) procedures to genotype data prior to analysis. Briefly, this

involved excluding SNPs with low call rate, pronounced deviation

from Hardy-Weinberg equilibrium or low minor allele frequency,

and individuals with low call rate, discrepant clinical and

genotypic gender, evidence of cryptic relatedness based on IBS

sharing (one member of each pair excluded) or outlying

continental ancestry based on principal components analysis.

The particular procedures and thresholds used for each study are

detailed in Table S2 in File S2.

Following genotype quality control, all cohorts were imputed to

approximately 2.5 million HapMap Phase II SNPs. European

ancestry cohorts used the Caucasian (CEU) reference panel, and

Asian ancestry cohorts used the combined Caucasian, Chinese,

Japanese and African reference (CEU+CHB+JPT+YRI) panel.

This provided data for a large set of overlapping SNPs for GWAS

meta-analyses.

Statistical Analysis
Primary meta-analysis of genetic associations with early

AMD compared to controls. Individual European-ancestry

cohorts conducted GWAS of early AMD. For each SNP, logistic

regression was performed using a one-degree of freedom trend test

assuming an additive effect of SNP allele dosage; logistic models

included age, gender and the first two ancestry principal

components as covariates. Regression coefficients and their

standard errors were estimated to represent the change in log

odds of AMD resulting from each additional copy of the test allele,

after adjusting for specified covariates. Analyses were performed

using the ProbABEL program [26] for AGES and ARIC cohorts,

mach2dat [27] for BMES, R software for CHS and GRIMP

software for the RS cohorts [28].

SNPs were included in meta-analyses if they exhibited an

imputation quality score (defined as the ratio of observed to

expected dosage variance) .0.3, minor allele frequency .0.01

and valid data in at least two cohorts. Strand data was available for

each cohort and all results were synchronised to the forward

strand. Fixed effects, inverse variance-weighted meta-analyses

were performed using METAL software. The pre-specified

threshold for genome-wide significant association was set at

561028. SNPs not meeting this threshold but achieving

P,161025 were considered as suggestively associated; that is,

potentially true signals, whose association may become more

significant with increased sample size. Between-cohort heteroge-

neity of estimated SNP association with disease was assessed using

I2 and Cochran’s Q metrics. Quantile-Quantile (Q-Q) plots and

Manhattan plots summarising the meta-analysis results were

produced using R software. Regional association results were

plotted using LocusZoom software [29]. Meta-analysis genomic

control inflation factors (lGC) were calculated as previously

described [30], as were standardised values for a sample of 1000

cases and 1000 controls (l1000) [30].

Genome-Wide Association Meta-Analysis of Early AMD
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Comparison of effect sizes between early and advanced

AMD for established AMD risk variants. In addition to the

primary GWAS of early AMD, in European-ancestry cohorts, we

performed association analyses for advanced AMD using a set of

confirmed AMD-associated SNPs. Asian-ancestry cohorts had

insufficient advanced AMD cases to perform these analyses.

Confirmed AMD-associated SNPs were required to demonstrate

genome-wide significant association (P,561028) with advanced

AMD in a published report, and were identified using the NIH

National Human Genome Research Institute (NHGRI) Catalog of

Published Genome-Wide Association Studies with search terms

‘‘Age-related macular degeneration’’ and ‘‘Age-related macular

degeneration (wet)’’. The identity and association evidence for

SNPs returned by the NHGRI search were corroborated with

original published reports in each case. In turn, the original reports

were checked for appropriate AMD phenotype definition and

searched to ensure no SNPs meeting eligibility criteria had been

omitted from the NHGRI catalog. Statistical analyses of individual

cohorts and meta-analyses of estimated SNP effect sizes were

performed as described above.

For the selected set of confirmed AMD-associated SNPs,

estimated SNP effect sizes for late and early AMD were statistically

compared using summary effect estimates from the European-

ancestry meta-analyses. The difference between the regression

coefficients was assessed using a two-tailed Z test [31] formulated

as

Z~
blate{bearlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE blateð Þ2z SE bearly

� �2
q

where blate, SE blate and bearly, SE bearly represent the meta-

analysis summary effect estimates and their standard errors for late

and early AMD, respectively. A total of 21 SNPs were assessed for

effect size differences. Each test was performed at a pre-specified

significance level of 0.00238, corresponding to a family-wise type I

error rate of 0.05 after Bonferroni adjustment. We note that this

threshold is somewhat conservative, as multiple, correlated SNPs

were included from the CFH and ARMS2 loci.

Secondary, Trans-ethnic Meta-analysis of Genetic
Associations with Early AMD

To extend on the results of the European-ancestry analysis, a

secondary meta-analysis was conducted including all European-

ancestry and Singapore-based, Asian-ancestry cohorts. Analyses in

individual cohorts were performed via logistic regression as

described for the primary European analysis. Fixed effects, inverse

variance-weighted meta-analyses including all European (AGES,

ARIC, BMES, CHS and RS) and Singapore-based (SiMES and

SINDI) cohorts were performed using METAL. For a set of

selected, validated AMD-associated variants (described above), we

also tabulated ancestry-specific effect sizes separately for Europe-

an- and Asian-ancestry cohorts.

Results

Primary Meta-analysis of Genetic Associations with Early
AMD

For each of the individual cohorts, summary demographic

characteristics are shown by AMD status in Table 1. A Q-Q plot

summarising the distribution of all P-values showed excellent

agreement with the expected null distribution throughout all but

the extreme tail of the distribution (Figures S2 and S5a in File S1).

The overall meta-analysis genomic control inflation factor

(lGC = 1.021) indicated an absence of confounding by population

stratification or other artefacts, as did the scaled, standardised

value (l1000 = 1.003).

The primary meta-analysis detected highly significant associa-

tion of numerous SNPs within CFH and ARMS2/HTRA1 loci with

risk of early AMD (Table 2, Table S4 in File S3, Figure S1 in File

S1). The peak results at these loci were detected for the CFH SNP

rs1329424 (OR[T] = 1.41, 95% CI: 1.33–1.50, P-val-

ue = 1.5610231) and the ARMS2/HTRA1 SNP rs3793917

(OR[G] = 1.43, 95% CI: 1.34–1.54, P-value = 4.3610224).

Aside from SNPs at the CFH and ARMS/HTRA1 loci, no

additional variants reached genome-wide significance. However, a

number of confirmed and plausible candidate genes contained

SNPs demonstrating possible association with early AMD

(561028,P,161025) (Table 2 and Table S5 in File S3). These

included SNPs in the ApoE/TOMM40 gene cluster on chromo-

some 19, the GLI3 gene on chromosome 7 and the tyrosinase gene

(TYR) on chromosome 11 (see Figures 1, 2, 3), and SNPs in the

vicinity of the complement-related genes CD46 and MBL2.

Comparison of Effect Sizes between Early and Late AMD
for Established AMD Risk Variants

SNPs in genes C2/CFB, C3, CFI, CETP, TIMP3, TNFRSF10A,

FRK/COL10A1, REST and LIPC (upstream) that have previously

demonstrated genome-wide significance with advanced AMD

showed only modest association with early AMD (Table 3). Of

these published associated variants, the strongest associations with

early AMD were observed for rs429608 in C2/CFB

(OR[G] = 1.18, 95% CI: 1.08–1.27, P-value = 9.661025),

rs2230199 in C3 (OR[C] = 1.18, 95% CI: 1.08–1.29, P-val-

ue = 2.561024) and rs13278062 in TNFRSF10A (OR[T] = 1.11,

95% CI: 1.05–1.18, P-value = 561024). For many published SNPs

we detected some evidence of association with both late and early

AMD (at a= 0.05), observing similar odds ratios for late AMD as

those previously reported (Table 3). Notably, for most of these

SNPs the estimated effect size for late AMD was several-fold

higher than that for early AMD. The absolute fold-change was

,3-4-fold for risk variants in CFH, ,3-fold for variants in

ARMS2/HTRA1, ,3-6-fold for variants in C2/CFB, ,4-fold for a

SNP in CETP and ,2-fold for variants in C3 and FRK/COL10A1.

For SNPs in CFH, ARMS2/HTRA1, and C2/CFB, the heteroge-

neity of effect size between early and late AMD was statistically

significant after multiple testing adjustment (P,0.05). The only

SNP showing some evidence for association but a weaker effect for

late AMD was rs10033900 in CFI, which showed very marginal

association (P = 0.038) with early AMD but no association with

late AMD, and had a slightly higher estimated effect for early than

late AMD (1.8-fold greater); however the difference in effect size

was not statistical significant (P.0.05). Previously published AMD

risk variants in REST, LIPC upstream and TIMP3 showed no

evidence of association (at a= 0.05) with either late or early AMD

in our study.

Due to the limited number of late AMD cases, our direct,

internal comparison provided modest power to detect effect size

differences between early and late AMD. Hence, we repeated the

effect size comparisons for validated AMD-associated SNPs, using

published effect estimates from well-powered GWAS of late AMD.

Table 4 shows analogous comparisons as shown Table 3, with late

AMD effect estimates replaced with published effect estimates.

This analysis produced largely consistent results as the internal

comparison. However, in addition to SNPs in CFH, ARMS2/

HTRA1 and C2/CFB numerous additional SNPs showed signif-

icant effect size differences between early and late AMD –

Genome-Wide Association Meta-Analysis of Early AMD
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Table 1. Population characteristics for the individual cohorts.

European Ancestry
Asian (Singapore)
Ancestry

AGES ARIC BMES CHS RS-I RS-II RS-III SiMES SINDI

Sample size

Early AMD 1031 399 796 258 1064 209 68 123 141

Advanced AMD 161 10 82 24 207 28 5 17 13

No AMD 1743 7717 1052 1501 1933 1076 1505 1965 1961

Mean age (SD)

Early AMD 77.8 (5.3) 62.3 (5.5) 72.5 (9.0) 80.0 (4.7) 75.1 (7.7) 69.8 (9.0) 59.8 (8.0) 66.1 (10.0) 64.9 (10.6)

Advanced AMD 77.8 (5.3) 65.2 (5.6) 79.5 (9.2) 82.3 (4.6) 79.9 (7.0) 78.7 (9.1) 75.8 (10.9) 72.1 (7.1) 67.5 (10.4)

No AMD 74.9 (5.0) 60.1 (5.6) 66.3 (9.5) 78.4 (4.1) 74.9 (8.0) 66.9 (6.8) 55.7 (5.2) 58.2 (11.1) 56.8 (9.6)

Female (%)

Early AMD 58.2 49.8 58.0 62.8 58.8 49.8 60.3 35.8 40.4

Advanced AMD 58.9 50.0 61.0 62.5 59.9 64.3 60.0 17.6 38.5

No AMD 56.6 53.2 55.7 61.9 56.2 49.8 56.2 54.2 50.2

Current smokers (%)

Early AMD 12.6 16.6 7.6 7.4 20.7 25.4 29.4 17.4 10.6

Advanced AMD 12.8 20.0 14.0 4.2 27.0 18.5 20.0 47.1 7.7

No AMD 12.4 17.2 11.5 5.8 25.3 23.8 26.4 19.9 14.7

doi:10.1371/journal.pone.0053830.t001

Table 2. Results for SNPs showing suggestive evidence of association (P,161025) in the primary (European-ancestry) meta-
analysis of early AMD.

Chr BPa SNP EAb Freqc OR (95% CI)d Pe I2f HetPg Gene Locus Nearby Genesh

1 175,835,422 rs16851585 c 0.92 0.77 (0.69, 0.86) 5.0E-06 63.8 0.011 intergenic

1 194,912,799 rs1329424 t 0.38 1.41 (1.33, 1.49) 1.5E-31 26 0.230 CFH

1 206,106,094 rs1967689 c 0.25 0.85 (0.8, 0.91) 5.1E-06 36.6 0.149 intergenic CD34, CD46

2 121,018,381 rs6721654 t 0.08 1.26 (1.14, 1.4) 6.5E-06 0 0.511 intergenic GLI2, INHBB

4 117,143,633 rs17586843 t 0.78 1.18 (1.1, 1.27) 1.5E-06 0 0.817 intergenic

6 106,366,821 rs7750345 a 0.75 1.16 (1.09, 1.24) 6.8E-06 57.1 0.030 intergenic

7 42,142,807 rs2049622 a 0.49 0.87 (0.83, 0.93) 8.9E-06 0 0.779 GLI3

8 127,401,839 rs11986011 t 0.02 2.5 (1.68, 3.71) 5.0E-06 49.3 0.095 intergenic FAM84B

10 54,245,002 rs6480975 c 0.84 1.21 (1.12, 1.32) 2.8E-06 69.6 0.003 intergenic MBL2

10 124,209,265 rs3793917 c 0.80 0.69 (0.64, 0.74) 4.3E-24 34.8 0.162 ARMS2/HTRA1

11 82,499,030 rs4293143 t 0.69 0.85 (0.79, 0.91) 7.8E-06 0 0.774 intergenic PCF11, RAB30

11 88,553,311 rs621313 a 0.51 0.87 (0.83, 0.92) 3.5E-06 49.9 0.063 TYR

13 36,963,446 rs9646096 a 0.95 0.74 (0.65, 0.84) 6.0E-06 0 0.604 intergenic POSTN, TRPC4

19 3,895,240 rs10406174 a 0.11 1.24 (1.13, 1.36) 5.6E-06 58.7 0.034 intergenic ITGB1BP3, DAPK3

19 50,084,094 rs6857 t 0.15 0.81 (0.74, 0.88) 1.4E-06 25.8 0.232 PVRL2

19 50,087,459 rs2075650 a 0.86 1.23 (1.13, 1.34) 1.1E-06 7.2 0.373 APOE/TOMM40

Where multiple correlated SNPs in the same gene/region showed similar association evidence, the most strongly associated SNP is shown.
aNCBI Human Genome Build 36.3 coordinates;
bEffective allele;
cFrequency of the effective allele;
dEstimated odds ratio and 95% confidence interval for the effect of each additional copy of the effective allele, based on the fixed-effects, inverse variance-weighted
meta-analysis of European-ancestry cohorts;
eP-value associated with the estimated OR;
fHeterogeneity I2 statistic;
gHeterogeneity P-value, based on Cochran’s Q statistic;
hwithin a 500 kb genomic region centred on the associated SNP.
doi:10.1371/journal.pone.0053830.t002
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including SNPs in REST, TNFRSF10A, C3, TIMP3 and upstream

of LIPC.

Secondary, Trans-ethnic Meta-analysis of Genetic
Associations with Early AMD

Secondary meta-analysis including all European samples plus

the two Asian-ancestry samples produced very similar results to the

primary analysis. There was no evidence of systematic bias of test

statistics (Figure S4 in File S1; lGC = 1.022, l1000 = 1.003) and

SNPs in the CFH and ARMS2/HTRA1 loci reached genome-wide

significance (Figure S3 in File S1). SNPs in the vicinity of ApoE

achieved slightly greater significance (peak P = 9.761027 at

rs6857), while the peak evidence for TYR (P = 961026 at

rs10830228) and GLI3 (P = 161025 at rs2049622) was slightly

reduced. Several additional intergenic regions were also identified

at P,1025 (Table S6 in File S3).

For the set of selected, validated AMD-associated variants

(described above), ancestry-specific effect sizes are shown sepa-

rately for European and Asian ancestry cohorts in Table 5.

Considering the low power of the Singapore-based analysis – with

,300 early AMD cases represented across the two constituent

samples – the effect sizes in the European and Asian-ancestry

cohorts were largely consistent for the candidate SNPs, with

confidence intervals for effect sizes overlapping for 8 of the 16

assessed SNPs. The principal exception was for the 6 SNPs located

within the CFH gene, which showed strong association in the

European analysis, but no association in our small Singapore-

based analysis.

Discussion

We report herein findings from GWAS meta-analysis restricted

to individuals with early AMD, prior to the development of late,

vision-impairing disease. As expected, SNPs at the CFH and

ARMS2/HTRA1 loci, which were discovered for late AMD,

comprised strong and significant risk factors for the development

of early AMD as well. However, these variants were shown to

impart a 3–4 times significantly weaker risk for early than late

AMD. Similar effect size ratios for early versus late AMD were

observed for additional risk variants in C2, CFB, C3 and CETP,

with the difference reaching significance for a SNP in C2/CFB.

These findings are consistent with those of studies showing that

risk variants in CFH, ARMS2, C2, CFB and C3 influence not only

risk of late AMD (based on comparison with normal subjects), but

also risk of progression from early to late stages of disease (based

on comparison with early AMD cases that did not progress)

[32,33,34,35]. A possible explanation for these findings is that the

estimated genetic effect size for late AMD comprises cumulative

effects of an initial development of early AMD signs and

progression from early to late stages of the disease.

It is noteworthy that our large study offered similar sample size

to assess genetic association with early AMD to a number of

previous GWAS that assessed the associations with late AMD

[10,11,13,14,15], but in contrast to other studies, we detected no

significant variants besides CFH and ARMS2 variants at genome-

wide significance. This may suggest weaker genetic effects for early

AMD, and a possible absence of large effect loci unique to early

AMD.

Figure 1. Regional association results for chromosome 7 SNPs in the GLI-Kruppel family member GLI3 gene. The index, associated SNP
is named and shown as a purple diamond (rs2049622: P = 8.961026); remaining SNPs are colored according to the strength of LD (r2) with the index
SNP (see figure legend). Pairwise LD and local recombination rates were calculated using HapMap CEU population data (Phase 2, release #22), with
annotated genes mapped according to NCBI Build 36 sequence position.
doi:10.1371/journal.pone.0053830.g001
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We speculate that the genetic component of early AMD may

include risk variants both shared with late AMD, unique to early

AMD, and perhaps unique to specific lesions classified here

altogether as early AMD. Many confirmed AMD risk variants

appear to confer both modest risk of early AMD and late AMD;

the presence of these variants may encourage both early disease

incidence and steady disease progression throughout time.

Additionally, we found suggestive evidence for possible early

AMD variants in several novel and biologically plausible genes not

previously associated with late AMD. These variants (e.g. within

TYR, GLI3 and upstream of GLI2) may influence only the initial

development of early pathologic features of AMD such as RPE

abnormalities and large soft drusen, with alternative pathways

mediating disease progression once early stage changes have

accumulated.

The GLI3 and GLI2 transcription factors are critical mediators

of Sonic Hedgehog (Shh) protein signalling, with species-conserved

roles in a range of developmental and adult processes [36].

Notably, Shh signalling is required for the development of Muller

glial stem cells [37], a retinal progenitor cell (RPC) with both

proliferative and neurogenic ability [38]. Although retinal

regeneration has not yet been demonstrated in the adult human,

in fish and amphibians acute retinal damage stimulates RPCs of

the ciliary marginal zone (CMZ) to proliferate and fully regenerate

the multilayered retina throughout life [39](24). Muller glia

isolated from the adult human retinal marginal region can also

re-enter the cell cycle and demonstrate proliferative potential

in vitro [38]. The presence of a Muller cell-specific regulatory

region upstream of the HTRA1 promoter [40], and the upregula-

tion of glial fibrillary acidic protein (GFAP) immunoreactivity in

the Müller cells of donor retina with drusen [41] may be

considered supporting evidence for the involvement of Muller glia

in early stages of AMD. It is also interesting to note that GLI3 and

GLI2 are zinc finger proteins [42], as zinc supplements have been

shown reduce the risk of progression from early to late AMD [43].

We also detected possible association of multiple variants in the

TYR gene encoding tyrosinase, the enzyme catalysing the first step

of melanin biosynthesis. Melanin is produced within pigmented

cells including skin melanocytes and retinal pigment epithelium

(RPE) cells [44] and deficiencies of melanin in RPE cells have been

associated with AMD [44,45]. Variants in TYR, including SNPs

correlated with our lead SNP, have previously shown strong

association with skin, hair and eye colour [46,47], tanning ability

[48], vitiligo [49] and melanoma risk [50,51] via GWAS. In

addition to protecting from sunlight-induced damage [52],

melanin is also an efficient antioxidant, reducing the oxidative

stress resulting from lipid peroxidation and reactive oxygen species

(ROS) generation [53]. Specifically, elevated melanin content in

RPE cells has been shown to reduce accretion of the auto-oxidant

lipofuscin [54], a key waste product of photoreceptor outer

segment phagocytosis implicated in extracellular drusen formation

[3]. This antioxidant function of melanin is consistent with

evidence supporting supplemental lutein and zeaxanthin in

modifying the course of AMD [55].

The detection of suggestively associated SNPs in the vicinity of

the Apolipoprotein E gene (ApoE) is not novel, but is consistent

with early implication of ApoE polymorphisms in AMD

[56,57,58,59,60]. Our most strongly associated SNPs have also

previously shown unequivocal association with Alzheimer’s disease

Figure 2. Regional association results for chromosome 11 SNPs in the tyrosinase precursor (TYR) gene. The index, associated SNP is
named and shown as a purple diamond (rs621313: P = 3.561026).
doi:10.1371/journal.pone.0053830.g002
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diagnosis, pathologic features and biomarkers [61,62,63,64,65], as

well as lipid levels and cardiovascular traits [66,67] in GWAS.

A potential limitation of this study is possible measurement error

in early AMD ascertainment. The milder nature of early AMD

signs could result in misclassification of some controls, particularly

in the two studies (ARIC and CHS) that examined only non-

stereoscopic color retinal photographs of one eye per subject, using

non-mydriatic cameras. An estimated misclassification rate for

cases and controls could be around 10–20% if using data from one

eye per subject. Misclassification would be expected to bias genetic

effect estimates for early AMD towards the null, and thus increase

the apparent effect differences between early and late AMD. We

note though, that the majority of participating cohorts in our study

examined stereoscopic retinal photographs of both eyes per

subject. Inter-center grading reliability of early AMD has been

assessed in a different study across three grading centres (the

Wisconsin, BMES and RS) based on stereoscopic images, and

showed, for example, 70.2% exact agreement for a 5 step AMD

severity scale, or 90.4% agreement if allowing 1 step difference

between Wisconsin and BMES graders (personal communication

with R.Klein). Furthermore, in sensitivity analyses excluding the

ARIC and CHS cohorts that used non-stereoscopic photographs

of one eye per subject, very little difference in effect estimates was

observed for the selected candidate SNPs. In fact, effect estimates

tended to be slightly smaller than in the full European meta-

analysis (the mean difference in regression coefficients was -0.012,

with a standard deviation of only 0.025). If measurement error was

a major contributor to the observed effect size differences between

early and late AMD, we would have expected the opposite result,

i.e. larger effect sizes after reducing measurement error. In

addition, a recent Age-relate Eye Disease Study (AREDS) report

involving longitudinally assessment of stereoscopic images of AMD

patients also documented differential effects of different AMD

candidate SNPs on various stages of AMD (from normal to early

and then late AMD) [35]. Taken together, this suggests that

misclassification error is not an important contributor to the

observed effect size differences between early and late AMD

detected in this study.

We also acknowledge the potential influence of increased

genetic and phenotypic heterogeneity of early AMD, compared to

late AMD. If the phenotypic signs of early AMD have a more

complex genetic basis, including a larger number of contributing

genetic variants, it is possible that a particular AMD risk variant

may act in a smaller proportion of subjects than in late AMD.

Under this scenario, the effect size in the relevant early AMD

subset may be similar to the effect upon late AMD, but the sample-

wide estimate will be reduced. Genetic heterogeneity may partially

result from phenotypic heterogeneity, if alternative biological

processes lead to a clinical presentation that appears as early

AMD, but does not progress to late AMD. Although very difficult

to quantify or control, such genetic heterogeneity may have

contributed to our observed effect estimate differences.

Finally, our analyses of late AMD had limited power, resulting

in wide confidence intervals for effect estimates and reducing

power to detect effect size differences between early and late

AMD. We note however, that analogous comparisons using

published estimates from well-powered GWAS of late AMD

produced strikingly similar results. As expected, numerous

additional SNPs showed significant effect size differences between

early and late AMD, but the general pattern of several-fold

Figure 3. Regional association results for chromosome 19 SNPs in the PVRL2/APOE/TOMM40 gene cluster. The index, associated SNP is
named and shown as a purple diamond (rs2075650: P = 1.161026).
doi:10.1371/journal.pone.0053830.g003
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increased effect sizes for late AMD was clearly consistent with

results of the direct internal comparison conducted in our study.

In conclusion, the results of our study confirm the involvement

of several established late AMD risk variants in early AMD and

provide additional, suggestive evidence for possible risk variants

and biological pathways specific to early AMD. These include

TYR SNPs previously associated with skin and eye pigmentation,

and variants in and upstream of GLI3 and GLI2, respectively,

potentially influencing retinal regeneration following injury. Our

study also demonstrates that many established late AMD genetic

risk variants showed reduced effects on early AMD compared to

late AMD. Further research should seek to clarify the underlying

biological processes involved in early AMD, potentially uncovering

novel preventative therapies to prevent the progression of early to

late, vision-threatening stages of AMD.

Web Resources
ProbABEL program: http://mga.bionet.nsc.ru/,yurii/ABEL/

mach2dat software: http://www.sph.umich.edu/csg/yli/mach/

index.html

METAL software: http://www.sph.umich.edu/csg/abecasis/

Metal/index.html

R software: http://www.r-project.org

(NHGRI) Catalog of Published Genome-Wide Association

Studies: http://www.genome.gov/gwastudies/

Table 4. Comparison of effect sizes for early AMD from this study versus published effect estimates for late AMD.

Early AMD – this study Late AMD –published data

SNP
Nearby
genesa Chr BPb EAc Freqd Betae OR (95% CI)f Pg Beta OR (95% CI)h P

Phet (adv vs
early)i Fold changej

rs1329424 CFH1 1 194,912,799 t 0.37 0.35 1.41 (1.33, 1.50) 1.5E-31 0.63 1.88 (1.68, 2.10) 6.40E-16 2.46E-06 1.83

rs1061170 CFH2 1 194,925,860 C 0.34 0.39 1.47 (1.37, 1.57) 2.4E-28 0.88 2.41 (NR) 1.30E-261 – 2.28

rs10737680 CFH1 1 194,946,078 a 0.58 0.31 1.36 (1.28, 1.44) 8.7E-26 1.13 3.11 (2.76, 3.51) 1.60E-76 ,1E-16 3.70

rs1410996 CFH2 1 194,963,556 G 0.58 0.31 1.36 (1.28, 1.44) 1.1E-25 1.00 2.71 (NR) 7.40E-235 – 3.26

rs380390 CFH3 1 194,967,674 c 0.59 0.33 1.39 (1.31, 1.47) 5.5E-30 1.53 4.6 (2.0, 11) 4.10E-08 1.24E-03 4.63

rs1329428 CFH4 1 194,969,433 C 0.58 0.30 1.36 (1.28, 1.44) 2.1E-25 1.02 2.78 (NR) 1.90E-52 – 3.36

rs1713985 REST5 4 57,481,207 G 0.09 0.08 0.92 (0.84, 1.02) 0.111 0.26 1.3 (1.19, 1.42) 2.34E-08 1.40E-03 3.36

rs10033900 CFI2 4 110,878,516 t 0.49 0.06 1.06 (1.00, 1.12) 0.038 0.17 1.18 (NR) 4.10E-10 – 2.81

rs9332739 C22 6 32,011,783 G 0.94 0.15 0.86 (0.75, 0.99) 0.030 0.78 2.17 (NR) 2.40E-23 – 5.17

rs9380272 C21 6 32,013,989 a 0.01 0.08 1.09 (0.73, 1.62) 0.678 1.46 4.31 (2.76, 6.87) 2.30E-08 1.61E-06 17.31

rs641153 CFB2 6 32,022,159 G 0.90 0.17 0.84 (0.76, 0.93) 1.1E-03 0.62 1.85 (NR) 5.50E-31 – 3.63

rs429608 C2/CFB1 6 32,038,441 G 0.85 0.16 1.18 (1.08, 1.27) 9.6E-05 0.77 2.16 (1.84, 2.53) 2.50E-21 7.89E-12 4.77

rs1999930 FRK/COL10A12 6 116,493,827 C 0.72 0.10 0.91 (0.85, 0.96) 1.7E-03 0.14 1.15 (1.10, 1.20) 1.10E-08 7.76E-02 1.40

rs13278062 TNFRSF10A5 8 23,138,916 t 0.51 0.11 1.11 (1.05, 1.18) 5.0E-04 0.31 1.37 (1.25, 1.49) 1.03E-12 4.32E-05 2.98

rs10490924 ARMS22 10 124,204,438 t 0.20 0.36 1.43 (1.33, 1.54) 9.1E-24 1.08 2.94 (NR) 3.6E-322 – 3.01

rs3793917 ARMS21 10 124,209,265 G 0.20 0.36 1.43 (1.34, 1.54) 4.3E-24 1.22 3.40 (2.94, 3.94) 4.10E-60 ,1E-16 3.39

rs10468017 LIPC upstr6 15 56,465,804 C 0.70 0.06 0.95 (0.89, 1.01) 0.083 0.20 1.22 (1.15, 1.30) 1.34E-08 3.35E-04 3.51

rs493258 LIPC upstr6 15 56,475,172 C 0.53 0.02 0.98 (0.93, 1.04) 0.581 0.15 1.16 (1.11, 1.22) 1.61E-08 7.67E-05 9.49

rs3764261 CETP1 16 55,550,825 a 0.33 0.07 1.07 (1.01, 1.14) 0.021 0.17 1.19 (1.12, 1.27) 7.40E-07 4.77E-03 2.44

rs2230199 C31 19 6,669,387 c 0.19 0.16 1.18 (1.08, 1.29) 2.5E-04 0.55 1.74 (1.47, 2.06) 1.00E-10 1.48E-05 3.37

rs9621532 TIMP31 22 31,414,511 a 0.94 0.05 1.05 (0.92, 1.20) 0.445 0.34 1.41 (1.27, 1.57) 1.10E-11 1.74E-04 6.66

aSuperscript shows reference for the largest study reporting genome-wide association of the relevant SNP with late AMD, from which the ‘‘Late AMD’’ effect estimates
were derived:
1Chen et al, 2010 11.
2Yu et al, 2011 15.
3Klein et al, 2005 12.
4Kopplin et al, 2010 13.
5Arakawa et al, 2011 10.
6Neale et al, 2010 14.
bNCBI Human Genome Build 36.3 coordinates;
cEffective allele;
dFrequency of the effective allele;
eSummary meta-analysis regression coefficient, indicating the overall, estimated change in log(odds) associated with each additional copy of the effective allele;
fEstimated odds ratio and 95% confidence interval for each additional copy of the effective allele, based on fixed-effects meta-analysis of European-ancestry cohorts;
gP-value associated with the estimated OR;
hNR: not reported;
iP-value from test of heterogeneity of regression coefficients between early and advanced AMD. The threshold for study-wise significance was 0.0036, after accounting
for multiple tests. Significant results are shown in bold. Heterogeneity could not be assessed for SNPs with no published confidence interval for the late AMD effect
estimate;
jRatio of regression coefficient for advanced vs early AMD, formulated as Betaadv/Betaearly.
Notes: This study did not have data and could not assess association for additional published SNPs rs4711751 in VEGFA and rs11200638 in HTRA1.
doi:10.1371/journal.pone.0053830.t004
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European Early AMD Singapore-based Asian Early AMD

SNP
Nearby
genes chr BP EA Freqa Beta OR (95% CI) P Phet Freqb Beta OR (95% CI) P Phet

rs1329424 CFH 1 194,912,799 t 0.37 0.35 1.41 (1.33, 1.50) 1.5E-31 0.23 0.25 20.01 0.99 (0.84, 1.16) 9.46E-01 0.1523

rs1061170 CFH 1 194,925,860 C 0.34 0.39 1.47 (1.37, 1.57) 2.4E-28 0.18 0.22 0.08 1.07 (0.88, 1.31) 4.58E-01 0.0654

rs10737680 CFH 1 194,946,078 a 0.58 0.31 1.36 (1.28, 1.44) 8.7E-26 0.01 0.48 20.03 0.97 (0.88, 1.06) 5.27E-01 0.3198

rs1410996 CFH 1 194,963,556 G 0.58 0.31 1.36 (1.28, 1.44) 1.1E-25 0.01 0.48 20.03 0.97 (0.89, 1.06) 5.49E-01 0.3333

rs380390 CFH 1 194,967,674 c 0.59 0.33 1.39 (1.31, 1.47) 5.5E-30 0.22 0.75 0.02 1.02 (0.87, 1.19) 7.80E-01 0.2013

rs1329428 CFH 1 194,969,433 C 0.58 0.30 1.36 (1.28, 1.44) 2.1E-25 0.02 0.47 20.04 0.96 (0.88, 1.05) 4.11E-01 0.4216

rs1713985 REST 4 57,481,207 G 0.09 0.08 0.92 (0.84, 1.02) 0.111 0.004 0.30 0.01 1 (0.9, 1.12) 9.13E-01 0.2978

rs10033900 CFI 4 110,878,516 t 0.49 0.06 1.06 (1.00, 1.12) 0.038 0.06 0.67 20.06 0.93 (0.84, 1.04) 2.32E-01 0.3802

rs429608 C2/CFB 6 32,038,441 G 0.85 0.16 1.18 (1.08, 1.27) 9.6E-05 0.51 0.78 0.01 1.01 (0.85, 1.2) 8.94E-01 0.2462

rs13278062 TNFRSF10A 8 23,138,916 t 0.51 0.11 1.11 (1.05, 1.18) 5.0E-04 0.65 0.51 0.08 1.07 (0.98, 1.18) 1.13E-01 0.09459

rs10490924 ARMS2 10 124,204,438 t 0.20 0.36 1.43 (1.33, 1.54) 9.1E-24 0.16 0.37 0.17 1.18 (1.07, 1.3) 5.88E-04 0.2827

rs3793917 ARMS2 10 124,209,265 G 0.20 0.36 1.43 (1.34, 1.54) 4.3E-24 0.16 0.39 0.17 1.18 (1.07, 1.3) 5.46E-04 0.2944

rs10468017 LIPC upstr 15 56,465,804 C 0.70 0.06 0.95 (0.89, 1.01) 0.083 0.12 0.82 0.06 1.06 (0.9, 1.26) 4.58E-01 0.5015

rs493258 LIPC upstr 15 56,475,172 C 0.53 0.02 0.98 (0.93, 1.04) 0.581 0.04 0.28 0.15 1.16 (1.03, 1.31) 1.21E-02 0.1815

rs3764261 CETP 16 55,550,825 a 0.33 0.07 1.07 (1.01, 1.14) 0.021 0.94 0.25 0.16 1.17 (1.02, 1.35) 2.47E-02 0.4247

rs9621532 TIMP3 22 31,414,511 a 0.94 0.05 1.05 (0.92, 1.20) 0.445 0.16 0.95 0.41 1.49 (0.79, 2.81) 2.07E-01 0.4174
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