21 research outputs found

    Clinical Implications of the Genetic Background in Pediatric Pulmonary Arterial Hypertension: Data from the Spanish REHIPED Registry

    Get PDF
    Genetics; Heritable pulmonary arterial hypertension; Pediatric pulmonary hypertensionGenética; Hipertensión arterial pulmonar hereditaria; Hipertensión pulmonar pediátricaGenètica; Hipertensió arterial pulmonar hereditària; Hipertensió pulmonar pediàtricaBackground: Pulmonary arterial hypertension (PAH) is a severe and rare disease with an important genetic background. The influence of genetic testing in the clinical classification of pediatric PAH is not well known and genetics could influence management and prognosis. Objectives: The aim of this work was to identify the molecular fingerprint of PH children in the REgistro de pacientes con HIpertensión Pulmonar PEDiátrica (REHIPED), and to investigate if genetics could have an impact in clinical reclassification and prognosis. Methods: We included pediatric patients with a genetic analysis from REHIPED. From 2011 onward, successive genetic techniques have been carried out. Before genetic diagnosis, patients were classified according to their clinical and hemodynamic data in five groups. After genetic analysis, the patients were reclassified. The impact of genetics in survival free of lung transplantation was estimated by Kaplan–Meier curves. Results: Ninety-eight patients were included for the analysis. Before the genetic diagnoses, there were idiopathic PAH forms in 53.1%, PAH associated with congenital heart disease in 30.6%, pulmonary veno-occlusive disease—PVOD—in 6.1%, familial PAH in 5.1%, and associated forms with multisystemic disorders—MSD—in 5.1% of the patients. Pathogenic or likely pathogenic variants were found in 44 patients (44.9%). After a genetic analysis, 28.6% of the cohort was “reclassified”, with the groups of heritable PAH, heritable PVOD, TBX4, and MSD increasing up to 18.4%, 8.2%, 4.1%, and 12.2%, respectively. The MSD forms had the worst survival rates, followed by PVOD. Conclusions: Genetic testing changed the clinical classification of a significant proportion of patients. This reclassification showed relevant prognostic implications.This project was funded by project “Bases Genético-Moleculares de la Medicina de Precisión en la Hipertensión Arterial Pulmonar”. Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Gobierno de España. Co-funded by “Fondo Europeo de Desarrollo Regional, Programa Operativo Crecimiento Inteligente 2014–2020” (Award number: PI 18/01233). A.C.-U. holds a research-training contract “Rio Hortega” (CM20/00164) from the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III). REHIPED is supported by unrestricted grants of Janssen and Ferrer

    Abnormal bone turnover in individuals with low serum alkaline phosphatase

    Get PDF
    The clinical spectrum of hypophosphatasia (HPP) is broad and variable within families. Along severe infantile forms, adult forms with mild manifestations may be incidentally discovered by the presence of low alkaline phosphatase (ALP) activity in serum. However, it is still unclear whether individuals with persistently low levels of ALP, in the absence of overt manifestations of HPP, have subclinical abnormalities of bone remodeling or bone mass. The aim of this study was to obtain a better understanding of the skeletal phenotype of adults with low ALP by analyzing bone mineral density (BMD), bone microarchitecture (trabecular bone score, TBS), and bone turnover markers (P1NP and ß-crosslaps). We studied 42 individuals with persistently low serum ALP. They showed lower levels of P1NP (31.4?±?13.7 versus 48.9?±?24.4 ng/ml; p?=?0.0002) and ß-crosslaps (0.21?±?0.17 versus 0.34?±?0.22 ng/ml, p?=?0.0015) than individuals in the control group. There were no significant differences in BMD, bone mineral content, or TBS. These data suggest that individuals with hypophosphatasemia have an overall reduction of bone turnover, even in the absence of overt manifestations of HPP or low BMD. We evaluated bone mineral density (BMD), bone microarchitecture, and bone turnover markers in patients with low serum levels of alkaline phosphatase. Our results show that these patients have low bone remodeling even in the absence of BMD abnormalities, thus supporting the recommendation of avoiding antiresorptives such as bisphosphonates in these subjects

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Pain and health-related quality of life in patients with hypophosphatasemia with and without ALPL gene mutations

    No full text
    Background: Low serum alkaline phosphatase levels are the hallmark of hypophosphatasia, a disorder due to pathogenic variants of the ALPL gene. However, some patients do not carry ALPL variants and the cause of low alkaline phosphatase remains unknown. We aimed to determine health-related quality of life in adults with low alkaline phosphatase and explore the differences between patients with and without ALPL mutations. Methods: We studied 35 adult patients with persistently low alkaline phosphatase unrelated to secondary acquired causes who had ALPL sequenced, and 35 controls of similar age. Three questionnaires about body pain (Brief Pain Inventory, BPI), physical disability (Health Assessment Questionnaire Disability Index, HAQ-DI), and health-related quality of life (36-item Short-Form Health Survey, SF-36) were delivered by telephone interviews. Results: The mean BPI intensity and interference scores were higher in the patient group (p=0.04 and 0.004, respectively). All domains of the HAQ instrument tended to score better in the control group, with significant differences in the ?reach? score (p=0.037) and the overall mean score (0.23 vs 0.09; p=0.029). Patients scored worse than controls in several SF-36 dimensions (Role physical, p=0.039; Bodily pain p=0.046; Role emotional, p=0.025). Patients with and without pathogenic variants scored similarly across all tests, without between-group significant differences. Conclusions: Patients with persistently low levels of alkaline phosphatase have significantly worse scores in body pain and other health-related quality of life dimensions, without differences between patients with and without pathogenic variants identified in ALPL gene. This is consistent with the latter ones carrying mutations in regulatory regions.HypophosphatasiaAlkaline phosphataseQuality of lifePatient-reported outcomesPainDisabilit

    Tenorio syndrome: Description of 14 novel cases and review of the clinical and molecular features

    No full text
    Tenorio syndrome (TNORS) (OMIM #616260) is a relatively recent disorder with very few cases described so far. Clinical features included macrocephaly, intellectual disability, hypotonia, enlarged ventricles and autoimmune diseases. Molecular underlying mechanism demonstrated missense variants and a large deletion encompassing RNF125, a gene that encodes for an U3 ubiquitin ligase protein. Since the initial description of the disorder in six patients from four families, several new patients were diagnosed, adding more evidence to the clinical spectrum. In this article, we described 14 additional cases with deep phenotyping and make an overall review of all the cases with pathogenic variants in RNF125. Not all patients presented with overgrowth, but instead, most patients showed a common pattern of neurodevelopmental disease, macrocephaly and/or large forehead. Segregation analysis showed that, though the variant was inherited in some patients from an apparently asymptomatic parent, deep phenotyping suggested a mild form of the disease in some of them. The mechanism underlying the development of this disease is not well understood yet and the report of further cases will help to a better understanding and clinical characterization of the syndrome.Federación Española de Enfermedades Raras (FEDER) (PI20)4.296 Q2 JCR 20211.192 Q1 SJR 2021No data IDR 2021UE

    Characterization of rare ABCC8 variants identified in Spanish pulmonary arterial hypertension patients

    Get PDF
    Pulmonary Arterial Hypertension (PAH) is a rare and fatal disease where knowledge about its genetic basis continues to increase. In this study, we used targeted panel sequencing in a cohort of 624 adult and pediatric patients from the Spanish PAH registry. We identified 11 rare variants in the ATP-binding Cassette subfamily C member 8 (ABCC8) gene, most of them with splicing alteration predictions. One patient also carried another variant in SMAD1 gene (c.27delinsGTAAAG). We performed an ABCC8 in vitro biochemical analyses using hybrid minigenes to confirm the correct mRNA processing of 3 missense variants (c.211C > T p.His71Tyr, c.298G > A p.Glu100Lys and c.1429G > A p.Val477Met) and the skipping of exon 27 in the novel splicing variant c.3394G > A. Finally, we used structural protein information to further assess the pathogenicity of the variants. The results showed 11 novel changes in ABCC8 and 1 in SMAD1 present in PAH patients. After in silico and in vitro biochemical analyses, we classified 2 as pathogenic (c.3288_3289del and c.3394G > A), 6 as likely pathogenic (c.211C > T, c.1429G > A, c.1643C > T, c.2422C > A, c.2694 + 1G > A, c.3976G > A and SMAD1 c.27delinsGTAAAG) and 3 as Variants of Uncertain Significance (c.298G > A, c.2176G > A and c.3238G > A). In all, we show that coupling in silico tools with in vitro biochemical studies can improve the classification of genetic variants.Instituto de Salud Carlos III | Ref. RD06/0003/0012Instituto de Salud Carlos III | Ref. PI18/01233Xunta de Galicia | Ref. ED431G-2019/06Xunta de Galicia | Ref. ED431C 2018/54Xunta de Galicia | Ref. ED481A-2018/304Ministerio de Economía y Competitividad (España) | Ref. RYC-2015-1824

    Clinical Implementation of Pharmacogenetic Testing in a Hospital of the Spanish National Health System: Strategy and Experience Over 3 Years

    No full text
    In 2014, we established a pharmacogenetics unit with the intention of facilitating the integration of pharmacogenetic testing into clinical practice. This unit was centered around two main ideas: i) individualization of clinical recommendations, and ii) preemptive genotyping in risk populations. Our unit is based on the design and validation of a single nucleotide polymorphism (SNP) microarray, which has allowed testing of 180 SNPs associated with drug response (PharmArray), and clinical consultation regarding the results. Herein, we report our experience in integrating pharmacogenetic testing into our hospital and we present the results of the 2,539 pharmacogenetic consultation requests received over the past 3 years in our unit. The results demonstrate the feasibility of implementing pharmacogenetic testing in clinical practice within a national health syste

    A six-attribute classification of genetic mosaicism

    No full text
    Mosaicism denotes an individual who has at least two populations of cells with distinct genotypes that are derived from a single fertilized egg. Genetic variation among the cell lines can involve whole chromosomes, structural or copy-number variants, small or single-nucleotide variants, or epigenetic variants. The mutational events that underlie mosaic variants occur during mitotic cell divisions after fertilization and zygote formation. The initiating mutational event can occur in any types of cell at any time in development, leading to enormous variation in the distribution and phenotypic effect of mosaicism. A number of classification proposals have been put forward to classify genetic mosaicism into categories based on the location, pattern, and mechanisms of the disease. We here propose a new classification of genetic mosaicism that considers the affected tissue, the pattern and distribution of the mosaicism, the pathogenicity of the variant, the direction of the change (benign to pathogenic vs. pathogenic to benign), and the postzygotic mutational mechanism. The accurate and comprehensive categorization and subtyping of mosaicisms is important and has potential clinical utility to define the natural history of these disorders, tailor follow-up frequency and interventions, estimate recurrence risks, and guide therapeutic decisions.Peer reviewe

    Running title: Novel loss of function KCNA5 variants in PAH

    Get PDF
    Reduced expression and/or activity of Kv1.5 channels (encoded by KCNA5) is a common hallmark in human or experimental pulmonary arterial hypertension (PAH). Likewise, genetic variants in KCNA5 have been found in PAH patients, but their functional consequences and potential impact on the disease are largely unknown. Herein, we aimed to characterize the functional consequences of 7 KCNA5 variants found in a cohort of PAH patients. Potassium currents were recorded by patch-clamp technique in HEK293 cells transfected with WT or mutant Kv1.5 cDNA. Flow cytometry, western blot and confocal microscopy techniques were used for measuring protein expression and cell apoptosis in HEK293 and human pulmonary artery smooth muscle cells (hPASMC). KCNA5 variants found in PAH patients (namely, p.Arg184Pro and p.Gly384Arg) resulted in a clear loss of potassium channel function as assessed by electrophysiological and molecular modelling analyses. The p.Arg184Pro variant also resulted in a pronounced reduction of Kv1.5 expression. Transfection with p.Arg184Pro or p.Gly384Arg variants decreased apoptosis of hPASMCs compared with the WT, demonstrating that KCNA5 dysfunction in both variants affects cell viability. Thus, in addition to affecting channel activity, both variants were associated with impaired apoptosis, a crucial process linked to the disease. The estimated prevalence of dysfunctional KCNA5 variants in the PAH population analyzed was around 1 %. Our data indicate that some KCNA5 variants found PAH patients have critical consequences for channel function supporting the idea that KCNA5 pathogenic variants may be a causative or contributing factor for PAH.This work was supported by Fundación Contra la Hipertensión Pulmonar (FCHP); Ministerio de Ciencia e Innovación [PID2020-117939RB-I00 to AC, PID2019-104366RB-C21 to TG, PID2019-107363RB-I00 to FPV]; Comunidad de Madrid [B2017/BMD-3727 to AC] and Instituto de Salud Carlos III [PI18/01233, PI21/01593] with funds from the European Union (Fondo Europeo de Desarrollo Regional FEDER); and by an annual grant by the FEDER foundation (Federación Española de Enfermedades Raras).Peer reviewe
    corecore