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Abstract

Reduced expression and/or activity of Kv1.5 channels (encoded by
KCNA5) is a common hallmark in human or experimental
pulmonary arterial hypertension (PAH). Likewise, genetic variants
in KCNA5 have been found in patients with PAH, but their
functional consequences and potential impact on the disease are
largely unknown. Herein, this study aimed to characterize the
functional consequences of seven KCNA5 variants found in a cohort
of patients with PAH. Potassium currents were recorded by patch-
clamp technique in HEK293 cells transfected with wild-type or
mutant Kv1.5 cDNA. Flow cytometry, Western blot, and confocal
microscopy techniques were used for measuring protein expression
and cell apoptosis in HEK293 and human pulmonary artery smooth
muscle cells. KCNA5 variants (namely, Arg184Pro and Gly384Arg)
found in patients with PAH resulted in a clear loss of potassium
channel function as assessed by electrophysiological and molecular

modeling analyses. The Arg184Pro variant also resulted in a
pronounced reduction of Kv1.5 expression. Transfection with
Arg184Pro or Gly384Arg variants decreased apoptosis of
human pulmonary artery smooth muscle cells compared with
the wild-type cells, demonstrating that KCNA5 dysfunction in
both variants affects cell viability. Thus, in addition to
affecting channel activity, both variants were associated with
impaired apoptosis, a crucial process linked to the disease. The
estimated prevalence of dysfunctional KCNA5 variants in the
PAH population analyzed was around 1%. The data indicate
that some KCNA5 variants found in patients with PAH have
critical consequences for channel function, supporting the idea
that KCNA5 pathogenic variants may be a causative or
contributing factor for PAH.
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Pulmonary arterial hypertension (PAH) is a
rare, debilitating, and progressive disease
defined by the sustained elevation of the
mean pulmonary artery pressure and the
pulmonary vascular resistance above 20 mm
Hg and 3Wood units at rest, respectively.
The chronic elevation of pulmonary
pressures leads to right ventricular and heart
failure and, eventually, to transplantation or
death, if untreated (1). PAH has complex and
multifactorial pathogenesis attributed to
persistent vasoconstriction and pulmonary
vascular remodeling characterized by
pulmonary artery smooth muscle cell
(PASMC) hypertrophy and progressive
neointimal proliferation of endothelial cells,
leading to occlusive vascular lesions of the
smallest pulmonary arteries (1, 2).
Pulmonary vascular remodeling in PAH
results from an imbalance between smooth
muscle cell growth and apoptosis, caused by
increased PASMC proliferation and/or
decreased PASMC apoptosis (3–5).

There is growing evidence that K1

channel dysfunction critically contributes to
excessive vasoconstriction and inappropriate
pulmonary vascular remodeling in PAH
(6, 7). In PASMCs, K1 channels are
responsible for setting resting membrane
potential (6, 8, 9) and thus regulating
pulmonary vascular tone, cell apoptosis,
proliferation, and survival (3). Their
activation produces membrane

hyperpolarization, which precludes the
opening of voltage-gated L-type Ca21

channels, leading to vasodilation. On the
other hand, reduced K1 conductance
produces depolarization, which enhances
voltage-gated L-type Ca21 channel opening,
leading to vasoconstriction and proliferation.
Additionally, K1 channels have been
implicated in both the early and late stages of
apoptosis. In this regard, K1 is the dominant
cation in the cytoplasm and thus plays an
important role in maintaining cell volume.
Therefore, in early apoptosis, reduced K1

channel activity inhibits apoptotic cell
shrinkage, and in later stages of apoptosis, it
decreases caspase activation and DNA
fragmentation (4, 10).

In PAH, the downregulation of K1

channels, particularly Kv1.5 and TASK-1, is
considered an early contributor to the
pathophysiology of the disease (6, 8, 9,
11–16). Reduced expression of Kv1.5 has been
considered a potential target in either human
or experimental PAH (9, 11, 13, 17–19). In
addition, different pathogenic variants or
polymorphisms in genes encoding K1

channels (KCNK3, KCNJ8, andABCC8/9)
and SNPs inKCNA5 have been previously
related to the disease (6, 12, 15, 20, 21).
Nevertheless,KCNA5 is among the genes
related to PAHwith a lower level of evidence
to play a causal role (22–24), mainly because
of the limited functional studies available.

Herein, we have functionally
characterized seven KCNA5 variants
described in Spanish patients with PAH. Our
study identifies novel loss-of-function
KCNA5mutations, providing crucial
information to consider KCNA5 dysfunction
a risk factor for PAH and an attractive
pharmacological target.

Methods

An extended version of the materials and
methods is available in the data supplement.

Patients
Patients were recruited from the Spanish
PAH registries (REHIPED and REHAP); all
index cases or legal tutors gave their consent
to participate in this project, and the
investigation was conducted in accordance
with the Declaration of Helsinki. This project
was approved by the ethical committees of
clinical research of Galicia, the Hospital
Universitario La Paz, and the Hospital
Universitario 12 de Octubre (PI-1210 and
PI18/01233).

Variant Selection
We performed a genetic analysis through a
customized massive parallel sequencing
panel. We selected several changes in the
KCNA5 gene described in a Spanish cohort
of patients with PAH (20, 22). For the
functional analysis, we focused on those
variants that, on the basis of guidelines from
the American College of Medical Genetics
(ACMG), were not classified as benign (see
Table E1 in the data supplement). From the
variants detected, we did not analyze two
variants—p.Leu316Alafs*142, a large
frameshift variant, and p.Glu208*, a deletion
removing the entire C terminus—because
such structural modifications are
incompatible with channel function and
were classified as pathogenic by the
ACMG guidelines.

Site-Directed Mutagenesis
Site-directed mutagenesis for each of
the variants was performed with the
hKv1.5-GFPpBK plasmid using the primers
listed in Table E2.

Cell Transfection
HEK293 cells, HeLa cells, and human
PASMCs (hPASMCs) were transfected with
WT or mutant hKv1.5-GFP-pBK channels
using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions.

Clinical Relevance

Here, we show that some KCNA5
variants found in pulmonary arterial
hypertensive patients have critical
consequences for channel function.
Our data support the idea that
KCNA5 pathogenic variants may be
a causative or contributing factor for
this disease.
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Flow Cytometry
Forty-eight hours after transfection, GFP-
positive cells were subjected to fluorescence-
activated cell sorting using a 488-nm laser
(FACSVantage SE; BD Biosciences). For
measuring Kv1.5 protein expression (GFP1)
and cell death (annexin V and propidium
iodide staining), cells were analyzed on a
FACSCanto II cytometer (BD Biosciences).

Immunoblot Analysis
Kv1.5 was detected using anti-Kv1.5 APC-
150 (1:1,000; Alomone) and a peroxidase-
coupled anti-mouse IgG secondary antibody
(1:10,000; Santa Cruz Biotechnology).
Vinculin was used as a loading control
(1:80,000; Santa Cruz Biotechnology).

Electrophysiological Recordings and
Data Acquisition
Currents were recorded using the whole-cell
patch-clamp technique with a patch-clamp
amplifier (Axopatch-200B; Molecular
Devices) and stored in a computer by a

Digidata 1440A A/D converter (Molecular
Devices), as described previously (9, 11).

Immunofluorescence
Transfected HeLa cells were incubated with
the anti-pancadherin (1:500; Abcam,
#ab22744) and anti-Kv1.5 APC-004 (1:50;
Alomone) to stain cell membrane and
Kv1.5 channels.

Molecular Modeling
The closed-state model of the Kv1.5 channel
was obtained by molecular homology from
the crystal structure of Kv1.2 and a
subsequent molecular dynamics simulation
embedded into a lipid membrane. Mutations
were built using the Mutator plugin from
VMD software (25). Molecular dynamics
simulations for both mutations were
performed with QwikMD for each cluster
(26). The solvent-accessible surface area
(SASA) was analyzed for the wild-type (WT)
channel and both mutations using VMD
software.

Statistical Analysis
The data are presented as mean6 SEM.
Outliers were detected with the ROUT
method (Q=1). Comparisons were
performed by using a one-way ANOVA
followed by a post hocDunnett test (multiple
comparisons) or by a two-tailed unpaired
Student’s t test (comparisons between two
groups), and statistical significance was set at
P, 0.05. All the statistical analysis was
conducted using GraphPad Prism 8
(GraphPad Software).

Results

Some KCNA5 Variants Show an
Alteration in the Kv1.5 Channel
Function
We performed an electrophysiological
characterization by whole-cell patch-clamp
of theWTKv1.5 channel and the KCNA5
variants of interest to investigate whether
the function of the channel was altered
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Figure 1. Current amplitude of Kv1.5 channels in seven KCNA5 variants of patients with pulmonary arterial hypertension recorded in HEK293
cells. (A) Schematic diagram of Kv1.5 channel a-subunit showing the six transmembrane domains (S1–S6), the tetramerization domain (T1),
and the cytosolic NH2 and COOH termini. All KCNA5 variants are labeled with colored dots. Created with biorender.com. (B) Maximum current
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presented as mean6SEM. ***P,0.001 and ****P,0.0001. (C) Representative current traces for an endogenous HEK293 current, the WT
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(Figure 1A and Table E3). A macroscopic
Kv1.5 current was observed inWT
channel–transfected cells in contrast with
nontransfected HEK cells. This was

comparable with that observed in Kv1.5
channels not fused with GFP (Figures 1B and
1C). Kv1.5 current amplitude was also
recorded in cells transfected with the

different variants and expressed as current
density (in picoamperes per picofarad),
showing a clear decrease in Gly384Arg
and especially in Arg184Pro (Figure 1B and
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Table E3). Figure 1C shows representative
current traces of the Kv1.5 current recorded
in cells expressing theWT channel or the
Arg184Pro and Gly384Arg variants.

In addition to the current amplitude,
other electrophysiological characteristics
were studied to analyze whether the variants
were associated with changes in channel
gating (see Table E3). Focusing on

Arg184Pro, a clear impairment in channel
gating properties was found, with a
significant leftward shift in the activation
(Figure 2A) and inactivation (Figure 2B)
curves toward more electronegative values
(activation half-maximal voltage
[Eh] =–4.916 0.97mV vs. –9.946 1.37mV,
n=16–20, P, 0.01; and inactivation
Eh=–5.616 1.69mV vs. –19.096 1.24mV,

n=14, P, 0.0001; forWT Kv1.5 and
Arg184Pro, respectively; see Table E3).
Moreover, slower activation and deactivation
kinetics and faster inactivation kinetics were
found (Figures 2C–2E and Table E3). In the
case of Gly384Arg, a slower activation kinetic
was observed (2.86 0.32ms vs.
1.786 0.09ms, n=15–20, respectively;
P, 0.05; see Figure E1A and Table E3).
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Moreover, although the Ile356Phe variant
did not significantly affect the current
amplitude, it resulted in a much slower
deactivation kinetic (ts = 56.666 3.72ms
and tf = 15.016 1.15ms, n=12; vs.
ts = 39.546 1.53ms and tf = 9.956 0.69ms,
n=19 in theWT Kv1.5 channel; P, 0.001;
see Figure E1B and Table E3).

We also calculated the unitary Kv1.5
current forWT, Arg184Pro, and Gly384Arg
channels by noise fluctuation analysis
(Figures 3A and 3B). We found that the
estimated unitary Kv1.5 current was reduced
in Arg184Pro and Gly384Arg variants
compared with that inWT channels (Figure
3C). The calculated Kv1.5 unitary
conductance at140mVwas 13.276 0.98 pS
for theWT channel, 5.706 0.29 pS for
Arg184Pro (P, 0.0001 vs. WT channel),
and 6.756 1.17 pS for Gly384Arg (P, 0.001
vs. WT channel). The unitary conductance
forWTKv1.5 channels was comparable with

that previously reported using noise
fluctuation analysis (27) or single-channel
recording (28).

Arg184 and Gly384 Residues Are
Highly Conserved
Multiple sequence alignments were
performed in the regions flanking the
mutated amino acids Arg184 and Gly384. The
Arg184Pro mutation is located at the
tetramerization domain of the channel (29).
This region of shaker-like proteins is highly
preserved across animal species from sea
anemones to mammals and in the human
Kv1.1-Kv1.6 channels (see Figures E2 and
E3). Only basic amino acids such as arginine
or lysine, are allowed in this position.
Therefore, substitution for a proline, as in the
Arg184Pro mutants, is expected to severely
affect channel function. The Gly384Arg
mutation is located at an extracellular loop,
near the S4 segment. The region flanking this

amino acid is relatively preserved among
mammals (Figures E3 and E4). However, the
Gly384 was absent in nonmammal
vertebrates, and the homology is completely
lost in this region for invertebrates. Partial
homology was found with the human Kv1.6
channel and, to a lesser extent, with Kv1.4.
These data are consistent with a moderate
effect of this mutation on channel function.

Arg184Pro KCNA5 Variant Results in a
Lower Expression of the Channel
We addressed whether the decrease in
current amplitude observed in Arg184Pro
and Gly384Arg variants could be associated
with differences in Kv1.5 expression. Thus,
total Kv1.5 protein expression was analyzed
by flow cytometry andWestern blot. The
cytometry analysis revealed a clear reduction
of Kv1.5 expression in HEK293 (Figure 4A,
left) and hPASMCs (Figure 4A, right)
transfected with Arg184Pro, but not in
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cells transfected with Gly384Arg. These
results were confirmed byWestern blot
(Figures 4B–4D), which revealed the
presence of two bands of�93 and 100 KDa
corresponding to the protein formed by
Kv1.5 channels plus the GFP (Figure 4B).
The upper band corresponds to the fully
glycosylated mature channel localized at the
plasma membrane, and the lower one
corresponds to the core-glycosylated
immature form. The expression of the
immature form and, especially, the mature
form of the channel was reduced in
Arg184Pro (Figure 4C). Thus, a clear
decrease in the protein maturation process,
expressed as percent mature form/total
protein, was observed (Figure 4D). KCNA5
mRNA levels were similar in theWT
channel and both variants (see Figure E5A),
and the transfection and translation efficacy
was also similar in theWT channel and
Arg184Pro variant. The latter was
demonstrated by flow cytometry
cotransfecting HEK293 cells with theWT
channel or the variant and the pmcherry-N1
plasmid sharing the same cytomegalovirus
promoter (Figures E5B–E5D).We found
a similar percentage of double-positive

(GFP1 mCherry1) cells and a reduction
in the GFPmean intensity as expected, but
no differences in the mCherry mean
intensity.

In agreement with these data, the
immunofluorescence analysis quantifying
anti-Kv1.5 fluorescence in the cells
confirmed a statistically significant loss of the
fluorescent signal in Arg184Pro-transfected
(P, 0.05), but not in Gly384Arg-transfected
cells, compared with theWT channel
(Figure 5). Altogether, these data indicated
that the Arg184Pro variant affects not only
channel gating but also protein expression.

Arg184Pro and Gly384Arg KCNA5
Variants Decreased Cell Death
of hPASMCs
Thereafter, the role of Arg184Pro and
Gly384Arg variants in cell apoptosis was
evaluated. hPASMCs were transfected with
theWT channel or the mutated KCNA5
channels, and cell viability and apoptosis
were analyzed by annexin V and propidium
iodide staining. A significant increase in
early, late, and total apoptosis was found in
hPASMCs transfected with theWT channel
compared with nontransfected cells

(Figure 6A). As compared with theWT
channel, both variants showed reduced
apoptotic activity consistent with a
significant decrease in both early and late
apoptosis and an increase in cell viability
(Figures 6B–6D).

Arg184Pro and Gly384Arg Variants
Result in Lower SASA of Kv1.5
Channels
Finally, we performed a computational
analysis to evaluate the impact of both
variants, Arg184Pro and Gly384Arg, in
channel gating. For this purpose, the SASA
of the Kv1.5 channel was calculated in the
WT and both variants. The analysis revealed
that both variants presented much lower
SASAs compared with theWT channel,
consistent with the electrophysiological
dysfunctions we had observed (Figure 7).

Clinical Characteristics of KCNA5
Pathogenic Variants/Cohort
Description
There was clinical heterogeneity among the
patients carrying the variants analyzed in our
study, including five idiopathic PAH types,
one sporadic pulmonary venooclusive
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disease, and one case with portopulmonary
hypertension. Considering those two patients
with KCNA5 pathogenic variants found in
our study and the two additional cases with a
more dysfunctional gene that we did not
analyze, the prevalence of dysfunctional
KCNA5 variants in the entire adult
population with PAH genetically tested
(475 patients) was�1%. These patients
showed generally an early-onset disease, a
female predominance, poor functional status,
and high hemodynamic severity (see
Table E4). Of note, one affected patient

experienced repetitive episodes of
supraventricular tachycardia, including
typical atrial flutter with atypical atrial flutter
and atrial fibrillation, and needed an
electrophysiological study, in which extensive
scarring was observed.

Discussion

In the present study, we have characterized
the functional consequences of several
KCNA5 variants found in patients with PAH.

Some of these variants (Arg184Pro and
Gly384Arg) resulted in a clear loss of
potassium channel function. This Kv1.5
channel dysfunction was also associated with
impaired apoptosis and enhanced viability of
hPASMCs. Our data strengthen the idea that
KCNA5 pathogenic variants may be a risk
factor for PAH.

Kv1.5 channel was the first ion channel
related to PAH (30). Since then, the
association of defective Kv1.5 channels with
susceptibility to PAH has been extensively
reported in both experimental and clinical

Figure 6. (Continued ). Gly384Arg variants. (C) Data are presented as percentage of early, late, and total apoptosis over Kv1.5 channel in both
variants (n=6). (D) Pie charts represent the percentage of cells in necrosis, early apoptosis, late apoptosis and viable cells (n=6). In all the
panels, results are presented as mean6SEM. *P,0.05, **P, 0.01, and ***P, 0.001.

Figure 7. Computational model of WT channel and Arg184Pro and, Gly384Arg variants in Kv1.5 protein. Top view of a representative frame of
Kv1.5 WT, Arg184Pro, and Gly384Arg computational models. The solvent-accessible surface area is calculated in each condition. The pore of
the channels is highlighted by the square of dashed lines. ****P,0.0001.

ORIGINAL RESEARCH

Vera-Zambrano, Lago-Docampo, Gallego, et al.: Novel Loss-of-Function KCNA5 Variants in PAH 155

 



PAH (6, 30). Thus, decreased Kv1.5 channel
function has been found in most
experimental models of pulmonary
hypertension, including the monocrotaline
(18), chronic hypoxia (16, 19), and hypoxia-
plus-Sugen (11) models, BMPR2 transgenic
mice (31), Fawn-hooded rats (17), and
5-HTT–overexpressing mice (11, 32).
Impairment of Kv1.5 channel is also found
in clinical PAH (30). Most recently, a
transcriptomic analysis has confirmed that
dysregulation of K1 channels, including
KCNA5, is a common hallmark in the
different forms of the disease (33).

SNPs in KCNA5were first reported by
Remillard and colleagues (12). Subsequently,
potentially deleterious variants of KCNA5
were reported in PAH (12, 20, 21, 34, 35) and
proposed as a second hit that may lead to
early and severe manifestations of the disease
(34). However, there is no definitive
consensus on its potential pathogenicity, and
it is still considered a gene with a low level of
evidence as a causal factor (23). Thus,
pathogenic variants in this gene remain an
unvalidated causal factor, mainly because of
the lack of studies assessing their functional
consequences (24).

In this study, we selected seven KCNA5
variants found in a cohort of patients with
PAH for functional analysis. Two additional
variants were not analyzed, as they encoded
truncated or aberrant proteins. We provide a
detailed functional analysis of the other seven
KCNA5 variants, which are all localized in
the N-terminal domain or loops between the
transmembrane segments of the channel
(Figure 1A). Kv1.5 current was recorded in
cells expressing any of the variants indicating
that all formed functional channels.
Nevertheless, in two variants (Gly384Arg
and especially Arg184Pro), a marked
decrease in the Kv1.5 current amplitude and
an alteration in channel gating was observed
in both time-dependent (kinetics) and
voltage-dependent (activation and
inactivation curves) electrophysiological
characteristics. Moreover, the estimation of
single-channel properties by nonstationary
noise fluctuation analysis indicated that the
reduced activity found in the two variants
was associated with decreased single-channel
conductance. In line with this, a
computational analysis revealed that the
SASA in both variants was lower than in the
WT channel, which confirms the impact of
both mutations on channel gating. We also
observed that the Ile356Phe variant showed a
slower channel deactivation, whereas the rest

of the electrophysiological properties
analyzed remain unaffected.

Pousada and colleagues identified the
Arg184Pro variant and classified it as
pathogenic using different computer
algorithms (20). Herein we demonstrate that,
indeed, this mutation results in a marked loss
of function of the channel. The Arg184

residue lies on the T1 domain, which
comprises different highly conserved and
polar residues that form an interface between
the T1 domains of the monomers (29)
(see Figures E2 and E3). In this case, a
positive charged and voluminous amino acid
(arginine) is substituted by a nonpolar and
small one (proline). The T1 domain is
responsible for the tetramerization and
governs channel interaction by cytoplasmic
regulatory subunits Kva and Kvb (29, 36), as
well as for plasma membrane expression
(37). Deleterious pathogenic variants located
in this region have been shown to have
important consequences, not only for
channel gating but also for protein
expression (38). By using cytometry and
western blot analyses, we found that the
Arg184Pro variant resulted in a strong
reduction of Kv1.5 protein. However, these
were unrelated to changes in mRNA
expression, indicating that the differences
found were not due to decreased
transcription. To properly reach the plasma
membrane and become a mature protein,
Kv1.5 channels have to be glycosylated on its
extracellular loop between S1 and S2 (39).
Thus, the Kv1.5 protein exists in mature and
immature forms, which are displayed in two
bands on aWestern blot. In cells transfected
with Arg184Pro, the mature and immature
forms of the protein were decreased, as well
as the mature/total protein ratio, suggesting
that this variant impairs the maturation
process. Decreased protein expression of the
Arg184Pro variant could be due to
augmented degradation, affected
tetramerization of the channel, or impaired
posttranslational modifications, among other
factors. Characterization of the underlying
molecular mechanisms and their final impact
on cell surface channel expression surely
deserve further investigation.

The variant Gly384Arg was described
by Casta~no and colleagues (22) and classified
as a variant with unknown significance
according to the ACMG guidelines (40).
This variant has been detected in the
pseudo–control population database
gnomADwith a frequency of,0.01%. Thus,
it is considered benign as a causative variant

according to the ACMG guidelines.
However, given our current functional data,
we may consider this as a variant with
unknown significance, suggesting that it may
have a predisposing rather than a causative
role in the pathogenesis of PAH. This variant
is located within the S3-S4 loop, substituting
a glycine for an arginine (see Figure E3).
S3-S4 linker length is variable between
potassium channel subfamilies and is lower
conserved than the T1 (see Figure E4). It is
interesting to outline that, in Kv1.5 channels,
this linker is short and flexible (18 amino
acids long) because almost one-third is
formed by glycine residues that could be
necessary to support the large displacement
produced by the S4 movement (41). In fact,
previous studies have shown that the
extracellular S3-S4 linker is a determinant of
activation in various depolarization-activated
K1, Ca21 , and hyperpolarization-activated
cyclic nucleotide–gated channels (42–44).
Moreover, the positive charge introduced
may repel the positive residues of the S4 to
such an extent that it affects the correct
function of the channel.

No electrophysiological changes were
observed in the rest of the KCNA5 variants
analyzed, suggesting a preserved channel
function. The unaltered function of two of
the variants localized in the S1–S2 linker,
Ala287Leu and Pro307Ser, could be expected
because the absence of this S1–S2 linkage can
generate a functional channel (37). Because
our study was performed in an isolated
heterologous system (HEK293 cells), we
cannot exclude that any of these variants
could affect Kv1.5 channel function when
expressed in a physiological system because
of its modulation by different kinases (PKC,
protein kinase A, and tyrosine kinases), as
well as by other proteins, such as the Kvb
subunits (45) that are not expressed in
HEK293 cells. Thus, our data cannot rule out
that the variants that did not affect current
amplitude could be modifying the
interaction of Kv1.5 with these modulator
proteins and indirectly affecting the
signaling cascade.

Kv1.5 channels are essential for
controlling PASMCmembrane potential and
regulate many key cellular processes that are
dysregulated in PAH, such as contraction,
apoptosis, proliferation, and survival (3, 6–9).
PAH is characterized by a disruption of the
apoptosis/proliferation balance, resulting
in enhanced PASMC viability. Brevnova
and colleagues showed that KCNA5
overexpression increases Kv current and
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enhances apoptosis in PASMCs, proposing
KCNA5 gene transfer as a strategy to prevent
PAH progression (4). In the present work,
the Arg184Pro and Gly384Arg variants,
which severely affected current amplitude,
resulted in a decreased apoptosis of
hPASMCs compared with theWT channel,
demonstrating that KCNA5 dysfunction in
both variants affects cell viability. Thus, in
addition to affecting channel activity, both
variants were associated with a clear
impairment in a key PASMC process linked
to the disease.

PAH pathophysiology is complex with
multiple genetic and environmental factors
being related to the disease. It is interesting to
note that many of these triggers converge in
ion channels, including Kv1.5 (6, 7, 46). For
instance, Kv1.5 channel expression,
trafficking, or activity can be modulated by
several proteins encoded by genes already
associated with PAH such as BMPR2 (31),
CAV1 (9, 47), andNOTCH3 (48). Thus, it
would be expected that the impact ofKCNA5
mutations may be exacerbated in patients

with genetic/acquired defects in these
proteins. It is also reasonable that, in patients
harboringmutations affecting other K1

channels (i.e.,KCNK3), Kv1.5 dysfunction
may further attenuate total K1 outward
currents and facilitate increased
vasoconstriction and vascular remodeling.
Therefore, and because the presence of several
mutations in the same or in different genes is
not uncommon (34, 49, 50), it is conceivable
that loss-of-functionKCNA5mutations may
modulate disease penetrance in patients
carrying other PAH-related gene mutations.

Although the low number of KCNA5
variant carriers limits their clinical
description, the profile of these patients
resembles that of the BMPR2 variant carriers
(51). In this work, most of the significant
cases were idiopathic and showed an early
onset of disease, and the hemodynamic
severity was highly remarkable. Nevertheless,
the long-term prognosis of these patients was
excellent. One of the pathogenic variants was
found in a patient with systemic
sclerosis–associated PAH, showing a lighter

clinical profile in terms of hemodynamic
severity. KCNA5 gene mutations have been
linked to the development of rhythm
disturbances as well as to QT interval
alterations (52). Nevertheless, we found only
one case with a long history of atrial
arrhythmias among carriers of pathogenic
KCNA5 variants. Further studies should
explore the possible relationship between
rhythm disorders and PAH in KCNA5
variant carriers.�
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