38 research outputs found

    State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing

    Get PDF
    Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L2L^2 regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intracortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell's equations while the latent model representing neural dynamics is given by a random walk process.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS483 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Measuring the signal-to-noise ratio of a neuron

    Get PDF
    The signal-to-noise ratio (SNR), a commonly used measure of fidelity in physical systems, is defined as the ratio of the squared amplitude or variance of a signal relative to the variance of the noise. This definition is not appropriate for neural systems in which spiking activity is more accurately represented as point processes. We show that the SNR estimates a ratio of expected prediction errors and extend the standard definition to one appropriate for single neurons by representing neural spiking activity using point process generalized linear models (PP-GLM). We estimate the prediction errors using the residual deviances from the PP-GLM fits. Because the deviance is an approximate χ2 random variable, we compute a bias-corrected SNR estimate appropriate for single-neuron analysis and use the bootstrap to assess its uncertainty. In the analyses of four systems neuroscience experiments, we show that the SNRs are -10 dB to -3 dB for guinea pig auditory cortex neurons, -18 dB to -7 dB for rat thalamic neurons, -28 dB to -14 dB for monkey hippocampal neurons, and -29 dB to -20 dB for human subthalamic neurons. The new SNR definition makes explicit in the measure commonly used for physical systems the often-quoted observation that single neurons have low SNRs. The neuron's spiking history is frequently a more informative covariate for predicting spiking propensity than the applied stimulus. Our new SNR definition extends to any GLM system in which the factors modulating the response can be expressed as separate components of a likelihood function

    Stimulus Dependence of Barrel Cortex Directional Selectivity

    Get PDF
    Neurons throughout the rat vibrissa somatosensory pathway are sensitive to the angular direction of whisker movement. Could this sensitivity help rats discriminate stimuli? Here we use a simple computational model of cortical neurons to analyze the robustness of directional selectivity. In the model, directional preference emerges from tuning of synaptic conductance amplitude and latency, as in recent experimental findings. We find that directional selectivity during stimulation with random deflection sequences is strongly dependent on the mean deflection frequency: Selectivity is weakened at high frequencies even when each individual deflection evokes strong directional tuning. This variability of directional selectivity is due to generic properties of synaptic integration by the neuronal membrane, and is therefore likely to hold under very general physiological conditions. Our results suggest that directional selectivity depends on stimulus context. It may participate in tasks involving brief whisker contact, such as detection of object position, but is likely to be weakened in tasks involving sustained whisker exploration (e.g., texture discrimination)

    Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex

    Get PDF
    Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used Bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic Bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V

    Thalamic neuromodulation and its implications for executive networks

    Get PDF
    The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function

    Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task

    No full text
    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition
    corecore