5 research outputs found

    The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea

    Get PDF
    The molecular force of blood-stage infection (molFOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum (Pf) and Pv blood-stage infections/year (Pf-molFOB = 0-18, Pv-molFOB = 0-23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections. Including relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater heterogeneity at individual (Pv-molFOB = 0-36) and village levels. Pf- and Pv-molFOB were strongly associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden by the high burden of Pv relapses. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02143934

    Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated malaria in Papua New Guinea

    Get PDF
    In 2009, the Papua New Guinea (PNG) Department of Health adopted artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PPQ) as the first- and second-line treatments for uncomplicated malaria, respectively. This study was conducted to assess the efficacy of both drugs following adoption of the new policy.; Between June 2012 and September 2014, a therapeutic efficacy study was conducted in East Sepik and Milne Bay Provinces of PNG in accordance with the standard World Health Organization (WHO) protocol for surveillance of anti-malarial drug efficacy. Patients ≥ 6 months of age with microscopy confirmed Plasmodium falciparum or Plasmodium vivax mono-infections were enrolled, treated with AL or DHA-PPQ, and followed up for 42 days. Study endpoints were adequate clinical and parasitological response (ACPR) on days 28 and 42. The in vitro efficacy of anti-malarials and the prevalence of selected molecular markers of resistance were also determined.; A total of 274 P. falciparum and 70 P. vivax cases were enrolled. The day-42 PCR-corrected ACPR for P. falciparum was 98.1% (104/106) for AL and 100% (135/135) for DHA-PPQ. The day-42 PCR-corrected ACPR for P. vivax was 79.0% (15/19) for AL and 92.3% (36/39) for DHA-PPQ. Day 3 parasite clearance of P. falciparum was 99.2% with AL and 100% with DHA-PPQ. In vitro testing of 96 samples revealed low susceptibility to chloroquine (34% of samples above IC; 50; threshold) but not to lumefantrine (0%). Molecular markers assessed in a sub-set of the study population indicated high rates of chloroquine resistance in P. falciparum (pfcrt SVMNT: 94.2%, n = 104) and in P. vivax (pvmdr1 Y976F: 64.8%, n = 54).; AL and DHA-PPQ were efficacious as first- and second-line treatments for uncomplicated malaria in PNG. Continued in vivo efficacy monitoring is warranted considering the threat of resistance to artemisinin and partner drugs in the region and scale-up of artemisinin-based combination therapy in PNG

    The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea

    No full text
    The molecular force of blood-stage infection (molFOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum (Pf) and Pv blood-stage infections/year (Pf-molFOB = 0-18, Pv-molFOB = 0-23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections. Including relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater heterogeneity at individual (Pv-molFOB = 0-36) and village levels. Pf- and Pv-molFOB were strongly associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden by the high burden of Pv relapses. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02143934
    corecore