71 research outputs found

    The strength of the radial-breathing mode in single-walled carbon nanotubes

    Full text link
    We show by ab initio calculations that the electron-phonon coupling matrix element M of the radial breathing mode in single-walled carbon nanotubes depends strongly on tube chirality. For nanotubes of the same diameter the coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3, which allows to discriminate semiconducting nano tubes with similar diameter by their Raman scattering intensity. We show measured resonance Raman profiles of the radial breathing mode which support our theoretical predictions

    Chirality distribution and transition energies of carbon nanotubes

    Full text link
    From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency and Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n_1,n_2) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega_RBM=214.4cm^-1nm/d+18.7cm^-1. In contrast to luminescence experiments we observe all chiralities including zig-zag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab-initio calculations.Comment: 4 pages, to be published in Phys. Rev. Let

    Phonon Linewidths and Electron Phonon Coupling in Nanotubes

    Full text link
    We prove that Electron-phonon coupling (EPC) is the major source of broadening for the Raman G and G- peaks in graphite and metallic nanotubes. This allows us to directly measure the optical-phonon EPCs from the G and G- linewidths. The experimental EPCs compare extremely well with those from density functional theory. We show that the EPC explains the difference in the Raman spectra of metallic and semiconducting nanotubes and their dependence on tube diameter. We dismiss the common assignment of the G- peak in metallic nanotubes to a Fano resonance between phonons and plasmons. We assign the G+ and G- peaks to TO (tangential) and LO (axial) modes.Comment: 5 pages, 4 figures (correction in label of fig 3

    Fundamental optical processes in armchair carbon nanotubes

    Get PDF
    Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been revealed via photoluminescence, Raman scattering, and ultrafast optical spectroscopy of semiconducting carbon nanotubes. On the other hand, dynamical properties of metallic nanotubes have been poorly explored, although they are expected to provide a novel setting for the study of electronヨhole pairs in the presence of degenerate 1-D electrons. In particular, (n,n)-chirality, or armchair, metallic nanotubes are truly gapless with massless carriers, ideally suited for dynamical studies of TomonagaヨLuttinger liquids. Unfortunately, progress towards such studies has been slowed by the inherent problem of nanotube synthesis whereby both semiconducting and metallic nanotubes are produced. Here, we use post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich ensemble samples in armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the nearinfrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G!) feature is a result of resonance with non-armchair “metallic” nanotubes. These !ndings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes lay the foundation for further spectroscopic studies to probe many-body physical phenomena in one dimension

    A Bird’s Eye View: Development of an Operational ARM Unmanned Aerial Systems Capability for Atmospheric Research in Arctic Alaska

    Get PDF
    Unmanned aerial capabilities offer exciting new perspectives on the Arctic atmosphere and the US Department of Energy is working with partners to offer such perspectives to the research community. Thorough understanding of aerosols, clouds, boundary layer structure and radiation is required to improve representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly-forming sea ice. Over the last three years, the US Department of Energy (DOE) has supported various flight campaigns using unmanned aircraft systems (UAS, also known as UAVs and drones) and tethered balloon systems (TBS) at Oliktok Point, Alaska. These activities have featured in-situ measurements of thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically-needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted toward the development of an exciting new community resource

    Cathodoluminescence efficiency dependence on excitation density in n-type gallium nitride

    Full text link
    Cathodoluminescence (CL) spectra from silicon doped and undoped wurtzite n-type GaN have been measured in a SEM under a wide range of electron beam excitation conditions, which include accelerating voltage, beam current, magnification, beam diameter, and specimen temperature. The CL intensity dependence on excitation density was analyzed using a power-law model (ICL ∝ Jm) for each of the observed CL bands in this material. The yellow luminescence band present in both silicon and undoped GaN exhibits a close to cube root (m = 0.33) dependence on electron beam excitation at both 77 K and 300 K. However, the blue (at 300 K) and donor-acceptor pair (at 77 K) emission peaks observed in undoped GaN follow power laws with exponents of m = 1 and m = 0.5, respectively. As expected from its excitonic character, the near band edge emission intensity depends linearly (m = 1) in silicon doped GaN and superlinearly (m = 1.2) in undoped GaN on the electron beam current. Results show that the intensities of the CL bands are highly dependent not only on the defect concentration but also on the electron-hole pair density and injection rate. Furthermore, the size of the focussed electron beam was found to have a considerable effect on the relative intensities of the CL emission peaks. Hence SEM parameters such as the objective lens aperture size, astigmatism, and the condenser lens setting must also be considered when assessing CL data based on intensity measurements from this material
    corecore