197 research outputs found

    Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases

    Get PDF
    In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections

    Trypanosoma brucei and Trypanosoma cruzi DNA mismatch repair proteins act differently in the response to DNA damage caused by oxidative stress

    Get PDF
    MSH2, associated with MSH3 or MSH6, is a central component of the eukaryotic DNA Mismatch Repair (MMR) pathway responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. Previous studies have shown that MSH2 plays an additional DNA repair role in response to oxidative damage in Trypanosoma cruzi and Trypanosoma brucei. By performing co-immunoprecipitation followed by mass spectrometry with parasites expressing tagged proteins, we confirmed that the parasites’ MSH2 forms complexes with MSH3 and MSH6. To investigate the involvement of these two other MMR components in the oxidative stress response, we generated knockout mutants of MSH6 and MSH3 in T. brucei bloodstream forms and MSH6 mutants in T. cruzi epimastigotes. Differently from the phenotype observed with T. cruzi MSH2 knockout epimastigotes, loss of one or two alleles of T. cruzi msh6 resulted in increased susceptibility to H2O2 exposure, besides impaired MMR. In contrast, T. brucei msh6 or msh3 null mutants displayed increased tolerance to MNNG treatment, indicating that MMR is affected, but no difference in the response to H2O2 treatment when compared to wild type cells. Taken together, our results suggest that, while T. cruzi MSH6 and MSH2 are involved with the oxidative stress response in addition to their role as components of the MMR, the DNA repair pathway that deals with oxidative stress damage operates differently in T. brucei

    Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines

    Get PDF
    BACKGROUND: The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. RESULTS: Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. CONCLUSION: Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can be used as live oral vaccines to immunize broilers against infectious diseases

    Inscrição votiva em língua lusitana (Arronches Portalegre)

    Get PDF
    Propõe-se leitura, interpretação e integração histórica da epígrafe redi- gida em língua lusitana, proveniente de uma herdade dos arredores de Arronches. Documenta o sacrifício de animais, designadamente de dez ovelhas, a divindades indígenas – Banda, Reva, Munis, Broeneia... – cujos nomes se fazem acompanhar de epítetos, um dos quais repetido com grafias diferentes (em dativo, Haracui, Aharacui, Harase), passí- vel de relacionar-se com o topónimo actual, Arronches. Na segunda parte, os três dedicantes, que poderão identificar-se como criadores de ovelhas, suplicam às divindades que lhes aceitem os sacrifícios. Considera-se muito viável a hipótese de relacionar esta e as outras epígrafes em língua lusitana – de Lamas de Moledo e Cabeço das Frá- guas – com as rotas da transumância logo nos primórdios da domina- ção romana

    Subgingival Microbiota Dysbiosis in Systemic Lupus Erythematosus: Association with Periodontal Status

    Get PDF
    Background Periodontitis results from the interaction between a subgingival biofilm and host immune response. Changes in biofilm composition are thought to disrupt homeostasis between the host and subgingival bacteria resulting in periodontal damage. Chronic systemic inflammatory disorders have been shown to affect the subgingival microbiota and clinical periodontal status. However, this relationship has not been examined in subjects with systemic lupus erythematosus (SLE). The objective of our study was to investigate the influence of SLE on the subgingival microbiota and its connection with periodontal disease and SLE activity. Methods We evaluated 52 patients with SLE compared to 52 subjects without SLE (control group). Subjects were classified as without periodontitis and with periodontitis. Oral microbiota composition was assessed by amplifying the V4 region of 16S rRNA gene from subgingival dental plaque DNA extracts. These amplicons were examined by Illumina MiSeq sequencing. Results SLE patients exhibited higher prevalence of periodontitis which occurred at a younger age compared to subjects of the control group. More severe forms of periodontitis were found in SLE subjects that had higher bacterial loads and decreased microbial diversity. Bacterial species frequently detected in periodontal disease were observed in higher proportions in SLE patients, even in periodontal healthy sites such as Fretibacterium, Prevotella nigrescens, and Selenomonas. Changes in the oral microbiota were linked to increased local inflammation, as demonstrated by higher concentrations of IL-6, IL-17, and IL-33 in SLE patients with periodontitis. Conclusions SLE is associated with differences in the composition of the microbiota, independently of periodontal status. Electronic supplementary material The online version of this article (doi:10.1186/s40168-017-0252-z) contains supplementary material, which is available to authorized users

    Genomic Analyses, Gene Expression and Antigenic Profile of the Trans-Sialidase Superfamily of Trypanosoma cruzi Reveal an Undetected Level of Complexity

    Get PDF
    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a highly debilitating human pathology that affects millions of people in the Americas. The sequencing of this parasite's genome reveals that trans-sialidase/trans-sialidase-like (TcS), a polymorphic protein family known to be involved in several aspects of T. cruzi biology, is the largest T. cruzi gene family, encoding more than 1,400 genes. Despite the fact that four TcS groups are well characterized and only one of the groups contains active trans-sialidases, all members of the family are annotated in the T. cruzi genome database as trans-sialidase. After performing sequence clustering analysis with all TcS complete genes, we identified four additional groups, demonstrating that the TcS family is even more heterogeneous than previously thought. Interestingly, members of distinct TcS groups show distinctive patterns of chromosome localization. Members of the TcSgroupII, which harbor proteins involved in host cell attachment/invasion, are preferentially located in subtelomeric regions, whereas members of the largest and new TcSgroupV have internal chromosomal locations. Real-time RT-PCR confirms the expression of genes derived from new groups and shows that the pattern of expression is not similar within and between groups. We also performed B-cell epitope prediction on the family and constructed a TcS specific peptide array, which was screened with sera from T. cruzi-infected mice. We demonstrated that all seven groups represented in the array are antigenic. A highly reactive peptide occurs in sixty TcS proteins including members of two new groups and may contribute to the known cross-reactivity of T. cruzi epitopes during infection. Taken together, our results contribute to a better understanding of the real complexity of the TcS family and open new avenues for investigating novel roles of this family during T. cruzi infection

    Disruption of the inositol phosphorylceramide synthase gene affects Trypanosoma cruzi differentiation and infection capacity

    Get PDF
    Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice

    Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi

    Get PDF
    A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to ∼6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5′ and 3′ untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system
    corecore