11 research outputs found

    ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis1[W][OA]

    No full text
    The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to the surface of developing microspores. Here, we describe ABCG26, a member of the ATP-binding cassette (ABC) transporter superfamily, which is required for pollen exine formation in Arabidopsis (Arabidopsis thaliana). abcg26 mutants are severely reduced in fertility, with most siliques failing to produce seeds by self-fertilization and mature anthers failing to release pollen. Transmission electron microscopy analyses revealed an absence of an exine wall on abcg26-1 mutant microspores. Phenotypic abnormalities in pollen wall formation were first apparent in early uninucleate microspores as a lack of exine formation and sporopollenin deposition. Additionally, the highest levels of ABCG26 mRNA were in the tapetum, during early pollen wall formation, sporopollenin biosynthesis, and sporopollenin deposition. Accumulations resembling the trilamellar lipidic coils in the abcg11 and abcg12 mutants defective in cuticular wax export were observed in the anther locules of abcg26 mutants. A yellow fluorescent protein-ABCG26 protein was localized to the endoplasmic reticulum and plasma membrane. Our results show that ABCG26 plays a critical role in exine formation and pollen development and are consistent with a model by which ABCG26 transports sporopollenin precursors across the tapetum plasma membrane into the locule for polymerization on developing microspore walls

    The Seed Coat’s Impact on Crop Performance in Pea (Pisum sativum L.)

    No full text
    Seed development in angiosperms produces three genetically and developmentally distinct sub-compartments: the embryo, endosperm, and seed coat. The maternally derived seed coat protects the embryo and interacts closely with the external environment especially during germination and seedling establishment. Seed coat is a key contributor to seed composition and an important determinant of nutritional value for humans and livestock. In this review, we examined pea crop productivity through the lens of the seed coat, its contribution to several valued nutritional traits of the pea crop, and its potential as a breeding target. Key discoveries made in advancing the knowledge base for sensing and transmission of external signals, the architecture and chemistry of the pea seed coat, and relevant insights from other important legumes were discussed. Furthermore, for selected seed coat traits, known mechanisms of genetic regulation and efforts to modulate these mechanisms to facilitate composition and productivity improvements in pea were discussed, alongside opportunities to support the continued development and improvement of this underutilized crop. This review describes the most important features of seed coat development in legumes and highlights the key roles played by the seed coat in pea seed development, with a focus on advances made in the genetic and molecular characterization of pea and other legumes and the potential of this key seed tissue for targeted improvement and crop optimization

    A rapid method for sex identification in Cannabis sativa using High Resolution Melt (HRM) analysis.

    No full text
    We report the identification of two SNPs in Cannabis sativa that are associated with female and male plant sex phenotypes, and are located on the top arm of the X chromosome. High Resolution Melt analysis was used to develop and validate a novel, rapid method for sex identification in medical/recreational cannabis as well as in hemp. This method can distinguish between dioecious male (XY) and dioecious female (XX) cannabis plants with 100% accuracy, and can also be used to differentiate between male and female Humulus lupulus (hop) plants.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Table_1_Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-generated diallelic mutants reveal Arabidopsis actin-related protein 2 function in the trafficking of syntaxin PEN1.XLSX

    No full text
    In plants, the actin cytoskeleton plays a critical role in defense against diverse pathogens. The formation of actin patches is essential for the intracellular transport of organelles and molecules toward pathogen penetration sites and the formation of papillae for an early cellular response to powdery mildew attack in Arabidopsis thaliana. This response process is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR complex (W/SRC). The ARP2/3 complex is also required for maintaining steady-state levels of the defense-associated protein, PENETRATION 1 (PEN1), at the plasma membrane and for its deposition into papillae. However, specific ARP2 functionalities in this context remain unresolved, as knockout mutants expressing GFP-PEN1 reporter constructs could not be obtained by conventional crossing approaches. In this study, employing a CRISPR/Cas9 multiplexing-mediated genome editing approach, we produced an ARP2 knockout expressing the GFP-PEN1 marker in Arabidopsis. This study successfully identified diallelic somatic mutations with both ARP2 alleles edited among the primary T1 transgenic plants, and also obtained independent lines with stable arp2/arp2 mutations in the T2 generation. Further analyses on these arp2/arp2 mutants showed similar biological functions of ARP2 to ARP3 in the accumulation of PEN1 against fungal invasion. Together, this CRISPR/Cas9-based approach offers highly efficient simultaneous disruption of the two ARP2 alleles in GFP-PEN1-expressing lines, and a rapid method for performing live-cell imaging to facilitate the investigation of important plant–pathogen interactions using a well-established and widely applied GFP marker system, thus gaining insights and elucidating the contributions of ARP2 upon fungal attack.</p

    The coordinated regulation of early meiotic stages is dominated by non-coding RNAs and stage-specific transcription in wheat

    No full text
    Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.</p

    The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development

    No full text
    Modern wheat production comes from two polyploid species, Triticum aestivum and Triticumturgidum (var durum), which putatively arose from diploid ancestors Triticumurartu, Aegilops speltoides, and Aegilopstauschii How gene expression during embryogenesis and grain development in wheats has been shaped by the differing contributions of diploid genomes through hybridization, polyploidization, and breeding selection is not well understood. This study describes the global landscape of gene activities during wheat embryogenesis and grain development. Using comprehensive transcriptomic analyses of two wheat cultivars and three diploid grasses, we investigated gene expression at seven stages of embryo development, two endosperm stages, and one pericarp stage. We identified transcriptional signatures and developmental similarities and differences among the five species, revealing the evolutionary divergence of gene expression programs and the contributions of A, B, and D subgenomes to grain development in polyploid wheats. The characterization of embryonic transcriptional programming in hexaploid wheat, tetraploid wheat, and diploid grass species provides insight into the landscape of gene expression in modern wheat and its ancestral species. This study presents a framework for understanding the evolution of domesticated wheat and the selective pressures placed on grain production, with important implications for future performance and yield improvements.plantcell;31/12/2888/FX1F1fx1.</p
    corecore