1,361 research outputs found

    Time of Suckling Implant Influences onWeaning Weight, Post-weaning Performance, and Carcass Traits in Steer Calves

    Get PDF
    The effect of time of suckling calf implant (SCI) use on weaning weight (WW), post-weaning performance and subsequent carcass traits was compared in steer calves produced on one ranch in western SD. Calves were born in March and April of each year and were reared on native range prior to weaning. The SCI strategies used included: non implanted controls (NI) or implanted with Synovex C either in May (MAY), or August (AUG). Age groups of dams (≥4 years) were managed separately through the breeding seasons. At weaning (late October) all calves were weaned and relocated to the SDSU Ruminant Nutrition Center feedlot. Steers were individually weighed, vaccinated, and treated for parasites and the processing body weight recorded was considered the WW. Steers were sorted into feedlot pens by SCI treatment (8 or 9 steers/pen; 8 pens/treatment; 24 pens/yr). Steers were backgrounded and finished using diets and management typical for this region and included the use of implants uniformly across SCI treatments. Both the MAY and AUG implant treatments increased WW over non-implanted calves. The magnitude of this was response interacted with the age of the dams. Steers nursing mature cows and implanted in May had the greatest increase in WW over NI (40 lb). The WW advantage for steers nursing mature cows and implanted in August was reduced to 17 lb. Timing of implant administration had the opposite effect in young cows and was more beneficial when steers were implanted in August. The weight advantage due to suckling implants persisted through to carcass weight. The SCI treatments did not affect the post-weaning ADG or feed efficiency of the steers and had no adverse effects on Quality Grade of the carcasses produced. There was a substantial benefit to the cow calf producer to match the time of implant administration with the age of the dam with no adverse impact on overall beef production

    Molecular transport calculations with Wannier functions

    Full text link
    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method is applied to a hydrogen molecule in an infinite Pt wire and a benzene-dithiol (BDT) molecule between Au(111) surfaces. We show that the transmission function of BDT in a wide energy window around the Fermi level can be completely accounted for by only two molecular orbitals.Comment: 15 pages, 12 figures, submitted to Chemical Physic

    Associations between personal care product use patterns and breast cancer risk among white and black women in the sister study

    Get PDF
    BACKGROUND: Many personal care products include chemicals that might act as endocrine disruptors and thus increase the risk of breast cancer. OBJECTIVE: We examined the association between usage patterns of beauty, hair, and skin-related personal care products and breast cancer incidence in the Sister Study, a national prospective cohort study (enrollment 2003–2009). METHODS: Non-Hispanic black (4,452) and white women (n = 42,453) were examined separately using latent class analysis (LCA) to identify groups of individuals with similar patterns of self-reported product use in three categories (beauty, skin, hair). Multivariable Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between product use and breast cancer incidence. RESULTS: A total of 2,326 women developed breast cancer during follow-up (average follow-up = 5:4 y). Among black women, none of the latent class hazard ratios was elevated, but there were <100 cases in any category, limiting power. Among white women, those classified as “moderate” and “frequent” users of beauty products had increased risk of breast cancer relative to “infrequent” users [HR = 1:13 (95% CI: 1.00, 1.27) and HR = 1:15 (95% CI: 1.02, 1.30), respectively]. Frequent users of skincare products also had increased risk of breast cancer relative to infrequent users [HR = 1:13 (95% CI: 1.00, 1.29)]. None of the hair product classes was associated with increased breast cancer risk. The associations with beauty and skin products were stronger in postmenopausal women than in premenopausal women, but not significantly so. CONCLUSIONS: This work generates novel hypotheses about personal care product use and breast cancer risk. Whether these results are due to specific chemicals or to other correlated behaviors needs to be evaluated. https://doi.org/10.1289/EHP1480

    Improving distribution network model accuracy using impedance estimation from micro-synchrophasor data

    Get PDF
    An accurate network model is essential for performing detailed analysis of a power system. The quality of many distribution network models is very diverse, especially for low voltage (LV) networks. To help identify areas where the model is incomplete or incorrect, Micro Phasor Measurement Units (μPMUs) can be integrated into a network. These μPMUs would work together, with a trusted cloud back-end system. The basis for this paper is to determine how the data collected by μPMUs can be used, and what can be calculated from this data to help recognize areas where the network model is inaccurate and may need resurveyed. As a preliminary investigation to determine the feasibility of the approach, this paper discusses the calculation of the impedance of both a transformer and line, and compares the values obtained from μPMU data to the level of value expected on the network

    DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1

    Get PDF
    DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiesterase 1) protein and with a defect in repairing certain types of SSBs. Although SCAN1 is a rare neurodegenerative disorder, understanding the molecular basis of this disease will lead to better understanding of neurodegenerative processes. Here we review recent progress in our understanding of TDP1, single-strand break repair (SSBR), and neurodegenerative disease

    Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder

    Get PDF
    Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3–33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra- and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow

    Analysis of glycoprotein processing in the endoplasmic reticulum using synthetic oligosaccharides

    Get PDF
    Protein quality control (QC) in the endoplasmic reticulum (ER) comprises many steps, including folding and transport of nascent proteins as well as degradation of misfolded proteins. Recent studies have revealed that high-mannose-type glycans play a pivotal role in the QC process. To gain knowledge about the molecular basis of this process with well-defined homogeneous compounds, we achieved a convergent synthesis of high-mannose-type glycans and their functionalized derivatives. We focused on analyses of UDP-Glc: glycoprotein glucosyltransferase (UGGT) and ER Glucosidase II, which play crucial roles in glycoprotein QC; however, their specificities remain unclear. In addition, we established an in vitro assay system mimicking the in vivo condition which is highly crowded because of the presence of various biomacromolecules

    Markov Properties of Electrical Discharge Current Fluctuations in Plasma

    Full text link
    Using the Markovian method, we study the stochastic nature of electrical discharge current fluctuations in the Helium plasma. Sinusoidal trends are extracted from the data set by the Fourier-Detrended Fluctuation analysis and consequently cleaned data is retrieved. We determine the Markov time scale of the detrended data set by using likelihood analysis. We also estimate the Kramers-Moyal's coefficients of the discharge current fluctuations and derive the corresponding Fokker-Planck equation. In addition, the obtained Langevin equation enables us to reconstruct discharge time series with similar statistical properties compared with the observed in the experiment. We also provide an exact decomposition of temporal correlation function by using Kramers-Moyal's coefficients. We show that for the stationary time series, the two point temporal correlation function has an exponential decaying behavior with a characteristic correlation time scale. Our results confirm that, there is no definite relation between correlation and Markov time scales. However both of them behave as monotonic increasing function of discharge current intensity. Finally to complete our analysis, the multifractal behavior of reconstructed time series using its Keramers-Moyal's coefficients and original data set are investigated. Extended self similarity analysis demonstrates that fluctuations in our experimental setup deviates from Kolmogorov (K41) theory for fully developed turbulence regime.Comment: 25 pages, 9 figures and 4 tables. V3: Added comments, references, figures and major correction

    Absolute Proper Motions to B~22.5: IV. Faint, Low Velocity White Dwarfs and the White Dwarf Population Density Law

    Get PDF
    The reduced proper motion diagram (RPMD) for a complete sample of faint stars with high accuracy proper motions in the North Galactic Pole field SA57 is investigated. Eight stars with very large reduced proper motions are identified as faint white dwarf candidates. We discriminate these white dwarf candidates from the several times more numerous QSOs based on proper motion and variability. We discuss the implausibility that these stars could be any kind of survey contaminant. If {\it bona fide} white dwarfs, the eight candidates found here represent a portion of the white dwarf population hitherto uninvestigated by previous surveys by virtue of the faint magnitudes and low proper motions. The newly discovered stars suggest a disk white dwarf scaleheight larger than the values of 250-350 pc typically assumed in assessments of the local white dwarf density. Both a <V/V_{max}> and a more complex maximum likelihood analysis of the spatial distribution of our likely thin disk white dwarfs yield scaleheights of 400-600 pc while at the same time give a reasonable match to the local white dwarf volume density found in other surveys. Our results could have interesting implications for white dwarfs as potential MACHO objects. We can place some direct constraints (albeit weak ones) on the contribution of halo white dwarfs to the dark matter of the Galaxy. Moreover, the elevated scale height that we measure for the thin disk could alter the interpretation of microlensing results to the extent of making white dwarfs untenable as the dominant MACHO contributor. (Abridged)Comment: 38 pages, 5 figures, to appear in April Ap

    Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO

    Full text link
    Gamma-ray bursts are believed to originate in core-collapse of massive stars. This produces an active nucleus containing a rapidly rotating Kerr black hole surrounded by a uniformly magnetized torus represented by two counter-oriented current rings. We quantify black hole spin-interactions with the torus and charged particles along open magnetic flux-tubes subtended by the event horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii) aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al. 2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating LIGO/Virgo detectors enables searches for nearby events and their spectral closure density 6e-9 around 250Hz in the stochastic background radiation in gravitational waves. At current sensitivity, LIGO-Hanford may place an upper bound around 150MSolar in GRB030329. Detection of Egw thus provides a method for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
    corecore