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Abstract--An accurate network model is essential for 

performing detailed analysis of a power system. The quality of 

many distribution network models is very diverse, especially for 

low voltage (LV) networks. To help identify areas where the 

model is incomplete or incorrect, Micro Phasor Measurement 

Units (μPMUs) can be integrated into a network. These μPMUs 

would work together, with a trusted cloud back-end system. 

The basis for this paper is to determine how the data collected 

by μPMUs can be used, and what can be calculated from this data 

to help recognize areas where the network model is inaccurate 

and may need resurveyed. As a preliminary investigation to 

determine the feasibility of the approach, this paper discusses the 

calculation of the impedance of both a transformer and line, and 

compares the values obtained from μPMU data to the level of 

value expected on the network.  

 
Index Terms—Micro-Synchrophasor, Phasor Measurement 

Unit, Underground cable modeling, Parameter estimation.  

I.  INTRODUCTION 

he technologies available to utilities for monitoring the 

power system are changing as the use of advanced 

electronics and sensors in consumer electronics have made 

components, and the software to utilize them, cheaper and 

widely available. These advanced sensors facilitate an 

understanding of the network that was previously unattainable.  

At the same time, there is increased penetration of 

distributed generation on the distribution network. Where as in 

the past this network could be assumed to have a predictable 

load profile, these changes are impacting online and offline 

analysis of the network, with the quality of the network models 

at distribution being more variable than at transmission. This 

creates challenges in collecting, integrating and aligning data 

from multiple disparate sources then analysing the impact on 

the network.  There is growing interest in shifting the world of 
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planning and operations, from reactive methodologies, where 

events are detected in real time, to predictive, with risk based 

analytics and preventative approaches.   

This project builds upon on an existing project at Lawrence 

Berkeley National Laboratory (LBNL) and California Institute 

for Energy and the Environment (CIEE), funded by ARPA-E 

[1][2].  This project focused on developing and using micro 

phasor measurement units (μPMUs) to analyse distribution 

networks to help identify issues with network model quality.  

One of the key outcomes of this project has been in 

understanding the data quality requirements for utilizing these 

sensors for model validation, in unbalanced distribution 

networks.  The μPMU is connected to the distribution system 

normally through an imperfect voltage and current transducer. 

A fundamental early application for impedance detection, 

immune to such accuracy issues, is the change in impedance 

over time.  A combination of cloud based analytics, and simple 

commonly used impedance detection methodologies, can be 

utilized to determine a change in component impedance.  If 

this estimated impedance moves out of a reasonable range, it is 

indicative of a need to either update and calibrate the network 

model, or consider checking and testing that particular line 

segment or transformer.  Rapid changes in impedance could 

indicate a reconfiguration, or fault condition.   

The data that is collected by LBNL and utility partners is 

used to complete impedance calculations to determine the 

characteristics of the line and compare this with the network 

model. As μPMUs contain a Global Positioning System (GPS) 

chip for timing purposes, it is possible to use this data along 

with a detailed integrated connectivity/geographical model to 

automatically establish the position of a μPMU both 

geographically and in terms of its position in the electrical 

network.   

A cloud-based system will allow multiple μPMUs to 

automatically connect, authenticate, integrate and send their 

data to the back-end system. A Trusted Cloud [3] platform can 

help to ensure the connection and data is secure. The collected 

data and network model will be used for both real time and 

offline analysis. This will include on-going calculations using 

data from multiple μPMUs, with automatic updates based on 

device locations and network connectivity analysis. Results of 

this will enable the identification of any calculations that 

indicate the parameters differ from that of the model, and from 

that of the previous calibrated impedance value for that 
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component. Similar work has been carried out for the case of 

balanced loads at the transmission level whereby the 

impedance of a transformer and overhead line was investigated 

[4]. 

Previous work has focussed on the application of μPMUs 

for distribution and the importance of measurement accuracy 

[1][2]; the application of trusted cloud platforms to the power 

industry [3]; the use of integrated data standards [4] for 

transmission and distribution networks; and the application of 

μPMUs for network monitoring [5]. The concept of using 

μPMU for power system state estimation is not new. It has 

been suggested since the GPS technologies have been 

available that wide area measurement and state estimation 

could be achieved using these devices [8].  Methods already 

being tested include using a linear three phase state estimator 

for distribution networks [9].  In this instance it is solved using 

the weighted least squares method and provides good 

accuracy. The test network for this work was a simulated IEEE 

13-bus feeder. The implementation, testing and performance of 

PMUs in state estimation of a transmission network is 

explored in [10], and demonstrates that success of the method 

depends greatly on the accuracy of the PMU measurements.  A 

three phase linear state estimation using only phasor 

measurements has also been explored [11]. This was a real-

time implementation on a 500 kV transmission network, 

running 30 times a second. A state distribution level estimator 

was deployed at a BC Hydro control centre [12]. Although the 

work is sound, the inputs to the state estimation were not from 

PMUs but from load profile pseudo measurements.  A real-

time three-phase state estimator for distribution networks has 

been deployed on the EPFL (École Polytechnique Fédérale de 

Lausanne) campus in Switzerland [13]. The network is 

comprised mainly of short lines, and has a variable load with 

active power injections. The inputs to the state estimation are 

PMU measurements sent via a PDC, and the results have an 

accuracy range of a few percent. 

This paper will look at how the data collected can be used to 

estimate the line and transformer parameters. The intended 

purpose is to identify any inconsistencies between the expected 

values and those calculated. Section II will discuss in more 

detail the data that was collected from the μPMUs and the 

network they were on. Section III covers the methods and 

equations used to calculate the impedances, and Section IV 

will examine what the results mean and the challenges in the 

approach. Finally, Section V will look at what can be done in 

the future to improve the approach, such as using more 

complex analysis. 

II.  PMU DATA COLLECTION 

A.  Type of μPMU 

The μPMUs used in the LBNL and utility test network were 

developed by Power Standards Laboratory [6] with costs that 

are a fraction of those used at transmission level, allowing for 

a wider deployment and use beyond real time monitoring. 

μPMUs can capture portions of the operating state of the 

system to provide actionable intelligence in real-time. Our 

research focuses on building a bottom-up view of the electric 

power distribution system using μPMU measurements in the 

context of limited availability of accurate system models and 

supplemental measurements (such as SCADA and AMI). To 

do so, we utilize μPMU measurements to parameterize 

approximations to system power flows. 

B.  Data from μPMUs 

The μPMU’s installed on the LBNL network had a sampling 

frequency of 120 Hz. For a given sample the dataset contains 

the magnitude and angle of the voltage for all three phases, the 

magnitude and angle of the current for all three phases and the 

time stamp [6]. This data is available for a number of μPMUs 

across two test networks. As part of this work one line of 

12.47KV (line-to-line) with a μPMU at either end was 

examined. This data was problematic to analyse due to the lack 

of an appreciable voltage drop across the line as a result of low 

loading levels. In order to carry out a more meaningful 

analysis a line from a partner utility was used along with a 

transformer from the LBNL network.  

C.  Measurement Accuracy 

Measurement accuracy of the μPMU and dependencies, 

which are added from the instrument transformers required, 

were discussed in [1]. In this work it was found that there is an 

inherent accuracy barrier in both the existing network models, 

and utilization of advanced sensor data.  These modelling 

accuracy barriers can limit distribution grid development in 

areas such as distributed generation interconnection, and 

advanced controls/automation. The sensor accuracy data is not 

a key limit for the existing state of distribution planning. Data 

needs for real time operational control objectives are very 

different from initial assessment in the planning context. The 

applications of the data must be appropriate based on the 

bandwidth for error, which accounts for the entire 

measurement chain from the wire to the point where data is 

utilized. An integrated approach for control algorithms and 

validation is required.  

D.  Network Model 

Fig. 1 shows the configuration on the μPMU’s for the 

purpose of estimating the transformer parameters. An 

estimation of the impedance of a transformer is carried out 

using μPMU A2 and A3. There was a short cable connecting 

μPMU A2 to the transformer, however, the impedance of this 

was assumed negligible with respect to the transformer.  

In the second data case, from a partner utility, we have two 

μPMUs at either end of an overhead line, which is 

approximately 2 miles long, and has significant daytime 

loading. This line was examined as it was determined that the 

Figure 1: Device configuration for transformer estimation 
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loading of the cables at LBNL was insufficient to result is 

appreciable voltage drops along the cable.  

III.  EQUATIONS 

The intention of this work is to help operators and planners 

identify any obvious, large discrepancies between the 

measured parameters of the network and those present in the 

network model, in an online or offline setting. The assumption 

is that should large, unexplained discrepancies be discovered, 

or a gradual change in time, a more detailed survey of the 

equipment would be undertaken so as to allow the operator to 

update their network model, or send field crews to perform 

remedial action. As a proof of concept, a simple analysis of the 

output data using two different methods for single line power 

flow was used to determine the impedance magnitude across 

the line, treating the lines as single phase cables and thus 

ignoring mutual impedances. 

 Following this the impedance of an unbalanced three-phase 

line located in Southern California was estimated using an 

Ordinary Least-Squares (OLS) method. Finally the impedance 

of a delta-grounded wye transformer located at LBNL was 

estimated.   

A.  Simple Methods for Impedance Magnitude Estimation 

a) Ohm’s Law 

The first equation applied to the data is to use the measured 

voltage and current phasors in combination with Ohm’s Law to 

determine the impedance magnitude across the line:  

DV = I ×Z

| Z |=
| DV |

| I |

  

This allows for a quick, high-level comparison of the 

calculated impedance with the model impedance. Should a 

significant error exist between this estimated and model 

impedance a more in-depth analysis is necessary considering a 

more complex model accounting for any loading unbalance in 

the system.  

B.  Impedance Estimation in Unbalanced, Three-Phase Lines 

We explore the three-phase, unbalanced case using a simple 

setup for which we have measurement data: a single line 

connecting a substation to the point of common coupling for a 

large solar installation. The solar installation and the 

substation are both monitored by μPMUs, and a few seconds’ 

worth of voltage and current measurements from those μPMUs 

is sufficient to make a rough approximation of the impedance 

of the connecting cable. 

 The problem can be written as an Ohm’s Law equation in 

matrix form, taking into account both the long distribution line 

connecting the substation (which will be our focus in this 

estimation) and the shorter line connecting the PV. This short 

line was assumed to have a negligible voltage drop with 

respect to the primary line of interest.  

 

 (4) 

 

Where the Z terms above are matrices of the form: 

 

Ẑ =

ZAA ZAB ZAC

ZAB ZBB ZBC

ZAC ZBC ZCC
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 (5) 

 

Re-arranging allows the elements of the substation 

impedance matrix to be collected in a vector and solved with 

an ordinary least squares (OLS) method. 

 

C.  Transformer Impedance Estimation 

The transformer under investigation was a delta-grounded 

wye transformer on the LBNL network. In order to perform 

impedance estimation the primary side voltage was referred 

across the transformer to the secondary side, as shown in 

equation (6), whereby uppercase subscripts refer to the 

primary side 

 

At[ ] VLNABC[ ]- VLGabc[ ] = Zabc[ ] Iabc[ ]  (6) 

 

with the following matrices having the form 

At[ ] =
1

nt

1 0 -1

-1 1 0

0 -1 1
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          Zabc[ ] =

Za 0 0

0 Zb 0

0 0 Zc
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ù
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nt =
VLLRated High Side

VLNRated Low Side

 

(7) 

whereby LL denotes the line-to-line voltage and LN denotes 

the line-to-neutral voltage.  

IV.  RESULTS 

A.  Simple methods for calculating impedance change 

 

TABLE 1: Impedance Magnitude Estimates 
 

 Model 
Data 

Ohms 
Law 

|Z aa| 1.2497 0.984 

|Z bb| 1.2497 0.906 

|Z cc| 1.2497 0.969 

 
 

There are number of potential reasons to explain these 

discrepancies: 
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 The potential transformers being used were not calibrated 
correctly resulting in inaccurate readings. 

 The network model does not reflect the as-built network. 

 There is an issue with the network and the readings 
reflect degradation to the cable or attached equipment. 

The reasons for these discrepancies are being investigated 

by looking at the data over a longer period to see longer trends 

for the two lines, checking the calibration of the equipment, 

and verifying the configuration of the installed equipment.  

While it has yet to be determined whether this analysis of the 

data has indeed identified an issue with the network, it 

highlights how the measured values can differ from what is 

expected from the network model. 

The purpose of this work is not to necessarily directly 

update network models with measured values, but instead to 

help identify where there could be issues with the network 

model. It could be that in many cases the discrepancies are not 

significant enough to impact on the operation of the network, 

but planners may need to be aware of that when analysing how 

the network would be impacted by other changes to the grid.   

To determine the more exact unbalanced network impedance 

we must apply more complex analytics to the data.  The 

simplistic method could indicate a problem in the data whereas 

the complex methods seek to correct the impedance value.  

B.   Unbalanced, Three-Phase Results 

Following this simple analysis a more robust methodology 

unbalanced three phase model was employed. When this 

method was tested on our field data, our estimated impedance 

matrix was:  

 

 

Ẑestimated =

0.5+1.29 j  0.12 + 0.37 j  0.21+ 0.18 j

0.12 +.37 j  0.59 +1.24 j  0.10 + 0.29 j

0.21+.18 j  0.10 + 0.29 j  0.45+1.08 j

é

ë

ê
ê
ê

ù

û
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ú
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This can then be compared against the values given by the 

utility feeder model: 

 

Zreal =

0.523+1.135 j 0.146 + 0.387 j 0.146 + 0.387 j

0.146 + 0.387 j 0.523+1.135 j 0.146 + 0.387 j

0.146 + 0.387 j 0.146 + 0.387 j 0.523+1.135 j

é
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ê
ê

ù

û
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ú

 

Our estimation is reasonable for the basic least-squares 

method that was used. The variation between our three 

calculated mutual impedance values is likely due to the 

measurement error introduced by instrumentation transformers 

in the circuit. With more advanced methods that treat that error 

explicitly, we expect to see significant reductions in that 

variation. 

C.  Transformer Impedance Estimations 

The initial estimate of the transformer impedance, referred 

to the primary side, is shown below 

   
Ẑestimated =

1.38+ 6.47 j  0 0

0 0.86 + 6.18 j  0

0 0 0.71+ 7.13 j  
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ê
ê

ù
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ú
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This can be compared against that of the nameplate data. 

 

Zreal =

0.899 + 5.886 j 0 0

0 0.899 + 5.886 j 0

0 0 0.899 + 5.886 j
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ù
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ú
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As can be seen from the above matrices, the estimated 

impedances lie within a reasonable range of the actual values. 

The discrepancies may exist due to the low loading of the 

transformer, ~15-20%, and thus the no-load losses may be 

attributed disproportionally to each individual amp relative to 

lab testing. Another reason for the discrepancy may be the 

effect of non-linear loads on the transformer. These effects 

may compound the effects of the instrumental transformers 

utilized in measuring the values.  

 

Fig. 2 shows the estimated resistance of Z1 corresponding to 

each loading level. It is seen that the estimates at higher 

loading levels are significantly above the nameplate rating. 

This is postulated to be due to the assumption of the 

magnetizing current being negligible with respect to the load 

current in the deployed transformer model. As the load current 

increases this assumption becomes more valid and the 

estimated tend towards the nameplate rating. Further analysis 

across a higher proportion of the transformer loading range is 

necessary to draw conclusive results regard=ding the 

behaviour of transformers at lower loading levels.  

 

V.  FUTURE WORK 

As stated previously, this is intended as a method of 

identifying where the network construction and network model 

may differ to help prioritise areas that need to be resurveyed. 

The method and equations used are rudimentary and are 

deliberately using the voltage and current measurements from 

each μPMU independently of any construction information 

within the network model. This is preliminary testing to check 

the feasibility of the proposed method. The aim was to check if 

there are any impedance discrepancies between network 

models. The accuracy of readings is also important when 

Figure 2: Estimates of transformer resistance as function of current 
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dealing with LV distribution networks, as the change in 

voltage and current is small compared to those changes in 

transmission networks. 

The mutual impedances and line susceptance have 

deliberately been disregarded to begin with as a first pass to 

identify potential issues with the network. Future work will 

focus on validating the readings and applying the data to more 

complex methods, including complex mesh analysis. The 

calculation of impedance in a meshed network will allow 

identification of any change in the condition of network 

topology by determining where the change has occurred. This 

work has already begun, and will take into account more 

complex analysis using cloud-computing resources. 

The initial results, considering mutual impedances, from the 

three-phase line impedance calculations are encouraging. 

There is however, further room for improvement. Future work 

will begin with supplementing OLS with more sophisticated 

algorithms that account for instrumentation transformer error, 

and potentially environmental factors as well. Once that has 

been accomplished and μPMU–based impedance estimation 

methods fully developed, further research will involve 

integrating impedance monitoring into control strategies that 

make use of μPMU-measured voltage and current angles as 

operating variables. 

The transformer parameter estimation provided reasonable 

results for a rudimentary algorithm that ignored potential 

stable errors introduced by the instrumental transformers. An 

analysis of the impedance estimations at various loading 

levels, as well as various temperatures may shed light on the 

operational behaviour of distribution transformers and in turn 

improve modelling practices.  
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