7,954 research outputs found

    In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy

    Get PDF
    peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsab20© Crown Copyright 2015. This document is the author's final accepted/submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    Lifting the Veil of Dust from NGC 0959: The Importance of a Pixel-Based 2D Extinction Correction

    Full text link
    We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. 2009 (Paper I). Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV), ground-based Vatican Advanced Technology Telescope (VATT) UBVR, and Spitzer/Infrared Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 micron images are studied through pixel Color-Magnitude Diagrams (pCMDs) and pixel Color-Color Diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 micron) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial to reveal the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.Comment: 10 pages, LaTeX2e requires 'emulateapj.cls', 'graphicx.sty', and 'natbib.sty' (included), 9 postscript figures, 1 table. Accepted for publication in AJ

    Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mara, P., Vik, D., Pachiadaki, M. G., Suter, E. A., Poulos, B., Taylor, G. T., Sullivan, M. B., & Edgcomb, V. P. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME Journal, (2020), doi:10.1038/s41396-020-00739-3.Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.This work was supported by the National Science Foundation grant OCE-1336082 to VPE, OCE-1335436 to GTT, OCE-1536989, a Moore Foundation Award (#3790) to MBS, and WHOI subaward A101259 to MP. The sequencing conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231

    Experimental electronic heat capacities of α−\alpha- and δ−\delta-Plutonium; heavy-fermion physics in an element

    Full text link
    We have measured the heat capacities of δ−\delta-Pu0.95_{0.95}Al0.05_{0.05} and α−\alpha-Pu over the temperature range 2-303 K. The availability of data below 10 K plus an estimate of the phonon contribution to the heat capacity based on recent neutron-scattering experiments on the same sample enable us to make a reliable deduction of the electronic contribution to the heat capacity of δ−\delta-Pu0.95_{0.95}Al0.05_{0.05}; we find γ=64±3\gamma = 64 \pm 3 mJK−2^{-2}mol−1^{-1} as T→0T \to 0. This is a factor ∼4\sim 4 larger than that of any element, and large enough for δ−\delta-Pu0.95_{0.95}Al0.05_{0.05} to be classed as a heavy-fermion system. By contrast, γ=17±1\gamma = 17 \pm 1 mJK−2^{-2}mol−1^{-1} in α−\alpha-Pu. Two distinct anomalies are seen in the electronic contribution to the heat capacity of δ−\delta-Pu0.95_{0.95}Al0.05_{0.05}, one or both of which may be associated with the formation of the α′−\alpha'- martensitic phase. We suggest that the large γ\gamma-value of δ−\delta-Pu0.95_{0.95}Al0.05_{0.05} may be caused by proximity to a quantum-critical point.Comment: 4 pages, 4 figure

    Probing the embedded YSOs of the R CrA region through VLT-ISAAC spectroscopy

    Full text link
    Near IR spectra obtained with ISAAC at VLT, have been used to pose constraints on the evolutionary state and accretion properties of a sample of five embedded YSOs located in the R CrA core. This sample includes three Class I sources (HH100 IR, IRS2 and IRS5), and two sources with NIR excesses (IRS6 and IRS3). Absorption lines have been detected in the medium resolution spectra of all the observed targets, together with emission lines likely originating in the disk-star-wind connected regions. We derived spectral types, veiling and stellar luminosity of the five observed sources, which in turn have been used to infer their mass and age adopting pre-main sequence evolutionary tracks. We find that in HH100 IR and IRS2 most of the bolometric luminosity is due to accretion, while the other three investigated sources, including the Class I object IRS5a, present a low accretion activity (L_{acc}/L_{bol} < 0.2). We observe a general correlation between the accretion luminosity, the IR veiling and the emission line activity of the sources. A correlation between the accretion activity and the spectral energy distribution slope is recognizable but with the notable exception of IRS5a. Our analysis therefore shows how the definition of the evolutionary stage of deeply embedded YSOs by means of IR colors needs to be more carefully refined.Comment: 17 pages, 13 figures, accepted on A&
    • …
    corecore