1,127 research outputs found

    Tree analysis code /TRACE/ program E64106. NERVA program

    Get PDF
    Computer program for Monte Carlo simulation of fault trees in analysis of large complex system

    Competition and/or Coexistence of Antiferromagnetism and Superconductivity in CeRhIn5_5 and CeCoIn5_5

    Full text link
    The Ce compounds CeCoIn5_5 and CeRhIn5_5 are ideal model systems to study the competition of antiferromagnetism (AF) and superconductivity (SC). Here we discuss the pressure--temperature and magnetic field phase diagrams of both compounds. In CeRhIn5_5 the interesting observation is that in zero magnetic field a coexistence AF+SC phase exist inside the AF phase below the critical pressure pc2p_{\rm c}^\star \approx 2 GPa. Above pcp_{\rm c}^\star AF is suppressed in zero field but can be re-induced by applying a magnetic field. The collapse of AF under pressure coincides with the abrupt change of the Fermi surface. In CeCoIn5_5 a new phase appears at low temperatures and high magnetic field (LTHF) which vanishes at the upper critical field Hc2H_{\rm c2}. In both compounds the paramagnetic pair breaking effect dominates at low temperature. We discuss the evolution of the upper critical field under high pressure of both compounds and propose a simple picture of the glue of reentrant magnetism to the upper critical field in order to explain the interplay of antiferromagnetic order and superconductivity.Comment: 6 pages, 7 figures, Manuscript for Proceedings of the International Conference on Quantum Criticality and Novel Phases (QCNP09, Dresden); to appear in pss(b

    Metamagnetic Quantum Criticality Revealed by 17O-NMR in the Itinerant Metamagnet Sr3Ru2O7

    Full text link
    We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7 as a function of magnetic field and temperature using 17O-NMR. This system sits close to a metamagnetic quantum critical point (MMQCP) for the field perpendicular to the ruthenium oxide planes. We confirm Fermi-liquid behavior at low temperatures except for a narrow field region close to the MMQCP. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T is enhanced on approaching the metamagnetic critical field of 7.9 T and at the critical field 1/T1T continues to increase and does not show Fermi- liquid behavior down to 0.3 K. The temperature dependence of T1T in this region suggests the critical temperature Theta to be 0 K, which is a strong evidence that the spin dynamics possesses a quantum critical character. Comparison between uniform susceptibility and 1/T1T reveals that antiferromagnetic fluctuations instead of two-dimensional ferromagnetic fluctuations dominate the spin fluctuation spectrum at the critical field, which is unexpected for itinerant metamagnetism.Comment: 5 pages, 4 figures, Accepted by Phys. Rev. Let

    Microperforated leaf blotting on polyvinylidene difluoride and nylon membranes to analyze spatial distribution of endogenous and viral gene expression in plant leaves

    Get PDF
    Leaf blotting to detect proteins and investigate their spatial distribution in leaves has so far mainly been used to detect viral coat proteins that accumulate abundantly in infected leaves, but rarely to detect endogenous plant proteins. We improved the method for detecting endogenous proteins. We found that microperforating leaves with bundled pins before blotting, then pressing leaves with a rolling pin onto polyvinylidene difluoride (PVDF) membranes enabled even blotting of sap. This microperforated leaf blotting (mPLB) was also suitable for use with nylon membranes to detect leaf RNA. The mPLB revealed that accumulation of two endogenous proteins, calmodulin-like rgs-CaM and actin, was respectively positively and negatively associated with that of viral coat protein in tobacco leaves infected with cucumber mosaic virus (CMV). When a tobacco plant primed with benzothiadiazole was inoculated with CMV, mPLB showed that the infection was restricted to some areas of the leaf, and that in these areas the mRNA encoding tobacco pathogenesis-related protein 1, an indicator of salicylic acid-mediated immune responses, was induced. These results demonstrate the effectiveness of mPLB for investigating the spatial distribution of endogenous and viral gene expression in leaves

    Diffraction from Ordered States of Higher Multipoles

    Full text link
    Possible ways of identification are discussed of an electronic order of higher multipoles such as octupoles and hexadecapoles. A particularly powerful method is resonant X-ray scattering (RXS) using quadrupolar resonance processes called E2.The characteristic azimuthal angle dependence of Ce0.7_{0.7}La0.3_{0.3}B6_6 is interpreted as evidence of antiferro-octupole order. For PrRu4_4P12_{12}, eightfold pattern against azimuthal angle is predicted if its metal-insulator transition is a consequence of a hexadecapole order. In non-resonant superlattice Bragg scattering, hexadecapole contribution may also be identified because of absence of quadrupole component.Comment: Invited paper to be published in Proc. Hiroshima Workshop on Novel Functional Materials with Multinary Freedoms (Physica B, 2006

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field

    Full text link
    We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced FL state. Upon approaching the quantum-critical points from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well with the predictions of the spin-density wave (SDW) scenario for three-dimensional (3D) critical spin-fluctuations. By contrast, the observed singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs at 10 T in M vs B (applied along the easy basal plane) above which the heavy fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics, special Series on "High Magnetic Field Facilities
    corecore