We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7
as a function of magnetic field and temperature using 17O-NMR. This system sits
close to a metamagnetic quantum critical point (MMQCP) for the field
perpendicular to the ruthenium oxide planes. We confirm Fermi-liquid behavior
at low temperatures except for a narrow field region close to the MMQCP. The
nuclear spin-lattice relaxation rate divided by temperature 1/T1T is enhanced
on approaching the metamagnetic critical field of 7.9 T and at the critical
field 1/T1T continues to increase and does not show Fermi- liquid behavior down
to 0.3 K. The temperature dependence of T1T in this region suggests the
critical temperature Theta to be 0 K, which is a strong evidence that the spin
dynamics possesses a quantum critical character. Comparison between uniform
susceptibility and 1/T1T reveals that antiferromagnetic fluctuations instead of
two-dimensional ferromagnetic fluctuations dominate the spin fluctuation
spectrum at the critical field, which is unexpected for itinerant
metamagnetism.Comment: 5 pages, 4 figures, Accepted by Phys. Rev. Let