893 research outputs found

    Mechanical And Thermal Properties Of Hydroxyapatite Filled Poly(Methyl Methacrylate) Composites.

    Get PDF
    Poly(methyl methacrylate) (PMMA) filled with hydroxyapatite (HA) filler has been widely used in biomaterial application. Acrylic denture base material was prepared from PMMA filled with HA

    In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains

    Get PDF
    Graphene and hexagonal boron nitride (h-BN), as typical two-dimensional (2D) materials, have long attracted substantial attention due to their unique properties and promise in a wide range of applications. Although they have a rather large difference in their intrinsic bandgaps, they share a very similar atomic lattice; thus, there is great potential in constructing heterostructures by lateral stitching. Herein, we present the in situ growth of graphene and h-BN lateral heterostructures with tunable morphologies that range from a regular hexagon to highly symmetrical star-like structure on the surface of liquid Cu. The chemical vapor deposition (CVD) method is used, where the growth of the h-BN is demonstrated to be highly templated by the graphene. Furthermore, large-area production of lateral G-h-BN heterostructures at the centimeter scale with uniform orientation is realized by precisely tuning the CVD conditions. We found that the growth of h-BN is determined by the initial graphene and symmetrical features are produced that demonstrate heteroepitaxy. Simulations based on the phase field and density functional theories are carried out to elucidate the growth processes of G-h-BN flakes with various morphologies, and they have a striking consistency with experimental observations. The growth of a lateral G-h-BN heterostructure and an understanding of the growth mechanism can accelerate the construction of various heterostructures based on 2D materials

    Observation of the nonlinear Hall effect under time reversal symmetric conditions

    Full text link
    The electrical Hall effect is the production of a transverse voltage under an out-of-plane magnetic field. Historically, studies of the Hall effect have led to major breakthroughs including the discoveries of Berry curvature and the topological Chern invariants. In magnets, the internal magnetization allows Hall conductivity in the absence of external magnetic field. This anomalous Hall effect (AHE) has become an important tool to study quantum magnets. In nonmagnetic materials without external magnetic fields, the electrical Hall effect is rarely explored because of the constraint by time-reversal symmetry. However, strictly speaking, only the Hall effect in the linear response regime, i.e., the Hall voltage linearly proportional to the external electric field, identically vanishes due to time-reversal symmetry. The Hall effect in the nonlinear response regime, on the other hand, may not be subject to such symmetry constraints. Here, we report the observation of the nonlinear Hall effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum material, bilayer WTe2. Specifically, flowing an electrical current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The NLHE exhibits unusual properties sharply distinct from the AHE in metals: The NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear longitudinal response, leading to a Hall angle of about 90 degree. We further show that the NLHE directly measures the "dipole moment" of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new Hall effect and provide a powerful methodology to detect Berry curvature in a wide range of nonmagnetic quantum materials in an energy-resolved way

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure

    Oral cancer and precancer research in Malaysia - the database and tissue resource bank

    Get PDF
    Introduction: Uncoordinated data collection by different research groups prompted the initiation of Malaysian oral cancer Research Initiative (MOCRI) group. Objectives: To coordinate and standardize data and tissue collection and storage, develop a minimum dataset on risk factors, intervention techniques and quality of life of oral cancer patients. Materials and Methods: A computer software programme is currently being developed to accommodate multi-centre data collection and research activities in eight hospitals. The complete dataset includes parameters on sociodemographic, clinical, pathological, quality of life measures, details of treatment methods, vital status and dietary intake. Tissues are being collected, stored and catalogued as fresh and formalin-fixed tissues for future use in satellite researches. The networking in tissue and data collection includes the establishment of oral cancer cell-lines. These tissues are being planned for studies on genetic profile, genetic polymorphism, diagnostic and prognostic markers. Results: Tissues and data on 115 oral cancers, 9 leukoplakia and 13 lichen planus has been collected since 2003. Preliminary data from 2004 were analysed for 58 cancer patients. Majority of them are more than 60 years old (65.5%) with a mean age of 63.3. Twenty-four (41.4%) were males, 34 (58.6%) females with the majority of them being Indians (56.9%) followed by Chinese and Malays (15.5% each), Indigenous people of Sabah and Sarawak (12.1%). Eighteen (31%) respondents were smokers, 17 (29.3%) alcohol drinkers and 31 (53.4%) betel quid chewers. Five patients have had histories of family cancers where 3 included immediate family members with head and neck cancers. For the quality of life measure, only 30.2% felt that their daily activities were disrupted despite having advanced cancers. Satellite researches are in progress on genetic polymorphism and tumour markers. One oral cancer cell-line has been established. Conclusion: The establishment of oral cancer database and tissue bank in encouraging and supports on-going satellite researches. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures

    Get PDF
    Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials
    corecore