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Background
The design of most complex products and systems like crane vessel, diesel engines etc., 
are mainly done by redesigning or making changes on existing predecessor designs until 
all new arising requirements are met (Smith et al. 2012; Romli and Harmin 2015). The 
main goal of any product redesigning exercise is to create new products and systems that 
meet the customer requirements as well as the product reliability. In identifying product 
component(s) to be redesign, the customer/user requirements which are mainly consid-
ered (Risdiyono and Koomsap 2013; Liu et al. 2012, 2014; Shieh et al. 2008; Shin et al. 
2015) and achieved through customer surveys using the quality function deployment 
(QFD) tool, often fail to guarantee or cover aspects of the product reliability. According 
to Dietrich (2006), only very few customers will specify the traditional reliability require-
ments in terms of mean time between failures (MTBF), Failure rate or the probability of 
failure occurrence. Even when they do, there are always many misunderstandings.

To improve the product reliability and quality during the product redesigning phase, 
and to create that novel product(s) for the customers, deliberate effort must be made 
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to identify and analyze the failure information of the existing product (Yang et al. 2011; 
Smith et al. 2012) by consulting the historical failure data of the product, where the ana-
lyzed information will be used for building appropriate design knowledge for the design 
engineer(s). The identification of the failed product component is most critical to achiev-
ing an improved product quality (He et al. 2015).

The method most commonly used for identifying and analyzing failures during the 
prototype testing stage is the failure mode and effect analysis (FMEA) method. The 
FMEA method which was introduced in the 1960s by the United States aerospace indus-
try as a structured and systematic method with apparent reliability and safety require-
ments (Bowles and Pelaez 1995) has proven to be a popular engineering technique for 
identifying, ranking and evaluating potential failures in new and existing products as 
well as in the improvement of product quality.

The FMEA method is an analytical tool that can be used to ensure the safety and reli-
ability of both new and existing products, it allows for an objective approach in making 
risk-based management decisions in a wide range of industries including the aerospace 
industry, automotive, nuclear, healthcare and the shipping industry etc. (Chang et  al. 
2012; Vinodh et  al. 2012; Helvacioglu and Ozen 2014; Liu et  al. 2013; Hu-Chen et  al. 
2013; Sayareh and Ahouei 2013). In implementing the FMEA method, a cross-functional 
team with expertise from different departments in a company are rottenly involved in 
the systematic evaluation and quantification of the relationships between the failure 
modes, effects, causes and controls, and to proposed corrective actions for the product 
(Zhao et al. 2016).

In spite of the fact that the FMEA method is a well-established method for product 
reliability assessment, however, there are some drawbacks that have been reported with 
its applications, including the difficulty to accurately and precisely determine the prob-
ability of failure event in products (Mohammadi and Tavakolan 2013; Xie 2013). The 
ineffectiveness of the method to accurately reflect, model or account for design errors, 
human factors implications, flawed requirements and component interaction accidents 
in products (Keizer et al. 2005; Liu et al. 2014; Martínez 2015) and finally, the fuzziness 
and hesitation of the experts’ subjective assessments which are not accounted for, mod-
eled or reflexed in the FMEA technique (Zhao et al. 2016).

In an attempt to solve these problems, several alternative methods and approaches 
have been presented in the literature. Among them we can mention, the new Euclidean 
distance-based similarity measure and an incremental learning clustering model pre-
sented by Tay et al. (2015), which they applied for clustering failure modes in FMEA in 
an edible birds nest industry. The fuzzy evidential reasoning and belief rule-based meth-
odology presented by Liu et al. (2013) for prioritizing failures in FMEA. The fuzzy evi-
dential reasoning and grey theory method by Liu et al. (2011).

Geum et  al. (2011), presents the service-specific FMEA and grey relational analysis 
approach for diagnosing service failure, while Netto et al. (2013), presents a mathemati-
cal model which is based on data envelopment analysis for analyzing the operational risk 
of flexible subsea risers and pipelines used for the transportation of oil and gas products.

A number of multi-criteria decision-making (MCDM) methods have also been pre-
sented as alternative methods for the FMEA, among them, we can mention; the VlseKri-
terijumska Optimizacija I Kompromisno Resenje (VIKOR) presented by Safari et  al. 
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(2016), for prioritizing enterprise architecture (EA) risk factors. Adhikary et al. (2014), 
presents an integrated approach which is based on grey number and complex propor-
tional assessment (COPRAS-G). Balin et al. (2014) presents a fuzzy analytic hierarchy 
process and VIKOR model for failure detection in a marine diesel engine. While Liu 
et  al. (2015), presented an intuitionistic fuzzy hybrid technique for order preference 
by similarity to ideal solution (TOPSIS) using an intuitionistic fuzzy hybrid weighted 
Euclidean distance (IFHWED) operator.

In a similar vein, this study is, therefore, presenting a new approach, an intuitionistic 
fuzzy TOPSIS model which is based on an exponentially related function (IF-TOPSISEF) 
as an alternative approach for the FMEA method. In this case, the new approach is used 
for building appropriate design knowledge about the to-be-improved or redesigned 
product component by analyzing the failure information about the product with the 
view to prioritizing the failure modes and to provide the designer with relevant informa-
tion to be used in improving the product reliability and quality during the product rede-
signing phase. The exponential related-based function is used for the computation of 
the separation measures from the intuitionistic fuzzy positive ideal solution (IFPIS) and 
intuitionistic fuzzy negative ideal solution (IFNIS) and for ranking the alternatives. The 
new exponential related-based function not only considers the deviation between the 
memberships with the non-membership degrees but also considers the hesitancy degree 
of the intuitionistic fuzzy set (IFS), unlike the existing matrices methods and functions 
that only considers the deviation between the memberships with non-membership 
degrees in the IFS. The weight of the evaluating criteria in this study is determined by 
using the intuitionistic fuzzy entropy originally proposed by Ye (2010a, b).

TOPSIS which is an abbreviation of Technique for Order Preference by Similarity to 
the Ideal Solution was originally proposed by Hwang and Yoon (1981) and has remained 
one of the most widely used MCDM methods with so many papers published on its 
applications (Bulgurcu 2012; Jadidi et  al. 2008; Pakpour et  al. 2013; Soufi et  al. 2015; 
Yang and Wu 2008; Ghazanfari et al. 2014; Zhu et al. 2012; Chou et al. 2012).

The choice of using intuitionistic fuzzy set in this study is based on the fact that, it 
is more capable than the traditional fuzzy sets at handling vagueness and uncertain 
information in practice (Datta et  al. 2013; Aikhuele and Turan 2016). Also, introduc-
ing the Fuzzy TOPSIS model in an intuitionistic fuzzy environment by using a modified 
exponential score function based separation method provides a whole new approach to 
solving multi-criteria decision-making problem. The intuitionistic fuzzy set (IFS) was 
introduced by Atanassov (1986), unlike the traditional fuzzy set theory, the IFS theory is 
characterized by a membership function and a non-membership function. The benefits 
of its applications have been addressed by Xu and Liao (2015), and Xu et al. (2013).

The rest of this paper is organized as follows. In “Preliminaries” section, the con-
cepts of intuitionistic fuzzy set (IFS) theory, the exponentially related function, and the 
intuitionistic fuzzy entropy is presented. The intuitionistic fuzzy TOPSIS algorithm is 
introduced in “Algorithm of the intuitionistic fuzzy TOPSIS based on ER function (IF-
TOPSISEF) and the entropy weight” section. In “Illustrative examples” section a numeri-
cal case is presented to illustrate the proposed methodology. The proposed approach is 
compared with existing approaches in “Comparison and discussion” section while the 
conclusion is presented in “Conclusion” section.
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Preliminaries
In this section, the fundamental definitions and concepts of IFS theory as described by 
Pérez-Domínguez et al. (2015) and Despic and Simonovic (2000) is presented, also, the 
exponentially related function is introduced as well as the intuitionistic entropy method.

Intuitionistic fuzzy set

Definition 1 Consider a fuzzy set A in X = {x} which is given by A = {�x,µA(x)�|x ∈ X}. 
Where µA : X → [0, 1] is the membership function of the fuzzy set A; μA(x) ∊ [0,1] is the 
membership of x ∊ X in A. Since IFS is characterized by two functions which expresses 
the degree of membership and non-membership of an element x to the set A, then an 
IFS A in X = {x} is defined as A = {�x,µA(x), vA(x)�|x ∈ X}, where µA : X → [0, 1] and 
vA : X → [0, 1] they are defined in a way that 0 ≤ µA(x)+ vA(x) ≤ 1, ∀x ∈ X.

The numbers µA(x) and vA(x) denotes the degree of membership and degree of 
non-membership of element x ∈ [0, 1] to the set A respectively. Also, the number 
πA(x) = 1− (µA(x)+ vA(x)) which is called the intuitionistic index of x in A is referred 
to as a measure of the degree of hesitancy of element x ∊ [0,1] in set A. It should be noted 
that 0 ≤ πA (x) ≤ 1 for each x ∈ X.

Definition 2 If the IFS A in X  =  {x} is defined fully in the form 
A = {�x,µA(x), vA(x),πA(x)�|x ∈ X}, where µA : X → [0, 1], vA : X → [0, 1] and 
πA : X → [0, 1].  The different relations and operations for the IFS are shown in 
Eqs. (1–4).

Definition 3 Let A =

(

µj , vj
)

, (j = 1, 2, 3, . . . , n) be a collection of interval-valued 
intuitionistic fuzzy numbers and w = (w1,w2,w3, . . . ,wn)

T be the weight vector of 
dk(k = 1, 2, 3, . . . , n), wj ∈ [0, 1] and 

∑n
j=1 wj = 1, associated with the intuitionistic 

fuzzy weighted averaging (IFWA) operator (Xu 2007a). The IFWA operator is defined as;

In the following will make comparisons between two IFS, by introducing some metric 
methods by following the score function and accuracy functions.

Definition 4 Let A = (µ, v) be an intuitionistic fuzzy number, a score function S of an 
intuitionistic fuzzy value can be represented as follow (Chen and Tan 1994; Xu 2007b);

(1)A.B = {�x,µA(x).µB(x), vA(x)+ vB(x)− vA(x).vB(x)�|x ∈ X}

(2)A+ B = {�x,µA(x)+ µB(x)− µA(x).µB(x), vA(x).vB(x)�|x ∈ X}

(3)�A =

{〈

x, 1− (1− µA(x))
�, (vA(x))

�

〉

|x ∈ X
}

, � > 0.

(4)A�
=

{〈

x, (µA(x))
�, 1− (1− vA(x))

�

〉

|x ∈ X
}

, � > 0

(5)IFWA(d1d2d3, . . . , dn) =

n
�

j=1

wjdj =



1−

n
�

j=1

(1− µj)
wj ,

n
�

j=1

vj
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where S(A) ∈ [−1,+1].

Definition 5 Let A = (µ, v) be an intuitionistic fuzzy number, an accuracy function H of 
an intuitionistic fuzzy value can be represented as follow (Hong and Choi 2000);

where H(A) ∈ [0, 1], the larger the value of H(A) the more the degree of accuracy of the 
intuitionistic fuzzy value A.

Definition 6 Let A = (µ, v) be the intuitionistic fuzzy number, according to Wu (2015) 
the exponential score function Se of the intuitionistic fuzzy number can be represented 
as;

where S(A) ∈ [1/e, e]

The exponential related function (ER)

Considering the matrices methods reviewed above, some few drawbacks have been 
reported in the literature. According to Wu (2015), the results obtained using the meth-
ods are not consistent in all cases also they often produce negative priority vector in 
their applications. Although the exponential score function proposed by Wu (2015) 
appear to address these drawbacks, however, the exponential score function is design for 
pairwise comparison and for determining priority weight. In this paper, the exponential 
score function has been modified to be used for more multi-criteria analysis. The new 
exponential related function ER, not only considers the deviation between the member-
ship degrees with the non-membership degrees but also considers the hesitancy degree 
of the IFS.

Definition 7 Let A = (µ, v) be the intuitionistic fuzzy number, where π is the hesitancy 
degree of the IFS. The new exponential related function ER of the intuitionistic fuzzy 
number can be defined as;

The exponential related function ER can be rewritten as

where π = 1− µ− v. ER(A) ∈ [0, 1].

Proof We can prove Definition 6 by mathematical induction and the similar proof 
method by comparing two IFNs. Next, we show that the exponential related function ER 
can achieve the same ranking as the exponential score function.

(6)S(A) = (µ− v),

(7)H(A) = (µ+ v),

(8)Se(A) = e(µ−v)

(9)ER(A) =
e(1−(|µ−v|)∗(1−π))

6

(10)ER(A) =
e
(

1−(|µ2
−v2|)

)

6
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Theorem 1 Let α1 =
(

µα1 , vα1
)

 and α2 =
(

µα2 , vα2
)

 be two intuitionistic fuzzy number 
of the exponential related function ER respectively, if α1 ⊃ α2 then ER(α1) > ER(α2).

Proof Assume that α1 =
(

µα1 , vα1
)

 and α2 =
(

µα2 , vα2
)

 are two comparable alternatives 
with intuitionistic fuzzy numbers based on some criteria ci such that α1 ⊃ α2 without 
loss of generality, let assume that α1 > α2 i.e.,µα1 > µα2and vα1 < vα2 be such that 
ER(α1) > ER(α2).

Now, a generalized exponential related function ER for an arbitrary IFN α = (µ, v) can 
be rewritten as follows;

From Eqs. (11) and (12) ER(α1) − ER(α2) is positive
If α1 − α2 we have;

Is a positive number, which shows α1 is better than α2.

The intuitionistic fuzzy entropy

Following the operations of the IFS, let us consider an intuitionistic fuzzy set A in the 
universe of discourse X = {x1, x2, x3, . . . , xn}. The intuitionistic fuzzy set A is trans-
formed into a fuzzy set to structure an entropy measure of the intuitionistic fuzzy set by 
means of µ ¯A(xi) = (µA(xi)+ 1− vA(xi))/2. Based on the definition of fuzzy informa-
tion entropy Ye (2010a, b) proposes the intuitionistic fuzzy entropy as follows;

When the criteria weights are completely unknown, we can use the intuitionistic fuzzy 
entropy to determine the weights. The criteria weight is given as;

(11)
ER(α1) =

e
(

1−(|µ2
−v2|)

)

6
=

∑

e

(

1−µ2
α1j

)

6
+

∑

1−
e

(

1−v2α1j

)

6

=

e

(

1−µ2
α11

)

6
+

e

(

1−µ2
α12

)

6
+ 1−

e

(

1−v2α11

)

6
+ 1−

e

(

1−v2α12

)

6

(12)
ER(α2) =

e
(

1−(|µ2
−v2|)

)

6
=

∑

e

(

1−µ2
α2j

)

6
+

∑

1−
e

(

1−v2α2j

)

6

=

e

(

1−µ2
α21

)

6
+

e

(

1−µ2
α22

)

6
+ 1−

e

(

1−v2α21

)

6
+ 1−

e

(

1−v2α22

)

6

=





e

�

1−µ2
α11

�

6
+

e

�

1−v2α11

�

6
+

e

�

1−µ2
α12

�

6
+

e

�

1−v2α12

�

6





−





e

�

1−µ2
α11

�

6
+

e

�

1−v2α11

�

6
+

e

�

1−µ2
α12

�

6
+

e

�

1−v2α12

�

6





(13)

E(A) =
1

n

n
∑

i=1

{{

Sin
π ∗ [1+ µA(xi)− vA(xi)]

4
+ Sin

π ∗ [1− µA(xi)+ vA(xi)]

4
− 1

}

∗

1
√

2− 1

}
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where Wj ∈ [0, 1], 
∑n

j=1Wj = 1, Hj =
1
mE

(

Aj

)

 and 0 ≤ Hj ≤ 1 for (j = 1, 2, 3, . . . , n).

Algorithm of the intuitionistic fuzzy TOPSIS based  
on ER function (IF‑TOPSISEF) and the entropy weight
In this section, we present the algorithm of the IF-TOPSISEF and the intuitionistic entropy 
weight to solve MCDM problems in which the preference information provided by DMs 
are expressed as intuitionistic fuzzy matrices and the matrices elements characterized by 
IFS value. The exponential-related function proposed herein is used for the calculation of 
the separation measures of each alternative from the intuitionistic fuzzy positive and nega-
tive ideal solutions (IFPIS and IFNIS) to determine the relative closeness coefficients.

Let consider a MCDM problem where a set of alternatives A = {A1,A2,A3, . . . ,Am} , 
are assessed with respect to the criteria denoted by C = {C1,C2,C3, . . . ,Cm}. The 
characteristics of the alternative Ai with respect to a criterion Cj are defined first with 
linguistic variable and then converted to an IFS value xij =  (μij, vij, πij) or xij =  (μij, vij) 
(i = 1, 2, . . . ,m, j = 1, 2, . . . , n), which represents the membership, non-membership 
and hesitancy degree of the alternative Ai ∈ A with respect to the criterion Cj ∈ C for the 
intuitionistic fuzzy concept.

The algorithm of the IF-TOPSISEF and the intuitionistic entropy weight are given in 
following steps;

Step 1: Set up a group of decision makers (DMs) and aggregate their evaluations; 
Once the DMs has given their judgment using linguistic variables, the weight vector 
� = (�1, �2, �3, . . . , �l)

T is used to aggregate all DMs individual assessment matrices 
DMk(k = 1, 2, 3, . . . , l) into the group assessment matrix (i.e. intuitionistic fuzzy deci-
sion matrix) DMmxn(xij) we have;

where µij =

(

1−
n
∏

j=1

(1− µj)
wj

)

, vij =
n
∏

j=1

vj

Step 2: Using the exponential related function ER (i.e. either use Eq.  (9) for the three 
grade; xij  =  (μij,  vij,  πij) or Eq.  (10) for membership and non-membership degrees 
xij =

(

µij , vij
)

 convert the intuitionistic fuzzy decision matrix DMmxn(xij) to form the 
exponential related matrix ERMmxn

(

ERij

(

aij
))

 as shown;

(14)

Wj =
1−Hj

n−

∑n
j=0Hj

(15)Anxm(aij) =

















(µ11, v11) (µ12, v12) . . . (µ1n, v1n)
(µ21, v21) (µ22, v22) · · · (µ2n, v2n)

...
...

. . .
...

...
...

. . .
...

(µm1, vm1) (µm2, vm2) · · · (µmn, vmn)
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Step 3: Using the intuitionistic entropy weight method as described in “The intuitionistic 
fuzzy entropy” section, determine the criteria weight.

Step 4: Define the IFPIS A+

=

(

µj , vj
)

 and IFNIS A−

=

(

µj , vj
)

; for the exponential 
related function-based matrix;

Step 5: Compute the exponential related ER function-based separation measures in 
intuitionistic fuzzy environment d+i (A

+,Ai) and d−i (A
−,Ai) for each alternative for the 

IFPIS and IFNIS.

Similarly, 

where wj is the weight of the criteria as described above.

Step 6: Compute the relative closeness coefficient, (CCi), which is defined to rank all pos-
sible alternatives with respect to the positive ideal solution A+. The general formula is 
given as;

where CCi(i = 1, 2, . . . n) is the relative closeness coefficient of Ai with respect to the 
positive ideal solution A+ and 0 ≤ CCi ≤ 1. The alternatives are ranked in the descend-
ing order. However, it is important to note here that since risk or failure is a negative 
concept, the lowest value is ranked as the highest.

Illustrative examples
In this section, we demonstrate the computational process of the IF-TOPSISEF and the 
intuitionistic entropy weight model for detecting failures in product components. The 
result from the evaluation is hoped to provide the designer(s) with adequate informa-
tion on the reliability of the product component and to guide them on designing for 

(16)
ERMmxn

�

Eij
�

aij
��

=

















ER11(x11) ER12(x12) . . . ER1n(x1n)
ER22(x22) ER22(x22) · · · ER2n(x2n)

...
...

. . .
...

...
...

. . .
...

ERm1(xm1) ERm2(xm2) · · · ERmn(xmn)

















(17)A+

=

{〈

Cj , [1, 1]
∣

∣Cj ∈ C
〉}

, j = 1, 2, 3, . . . , n,

(18)A−

=

{〈

Cj , [0, 0]
∣

∣Cj ∈ C
〉}

, j = 1, 2, 3, . . . , n.

(19)d+i (A
+

, Ai) =

√

√

√

√

n
∑

i=1

[

wj

(

1−
(

ERMnxm(aij)
))]2

(20)d−i (A
−,Ai) =

√

√

√

√

n
∑

i=1

[

wj

(

ERMnxm(aij)
)]2

(21)CCi =
d−i (A

−,Ai)

d−i (A
−,Ai)+ d+i (A

+,Ai)
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reliability. Also to assist the product development team in pinpointing the exact com-
ponent to adjust, replace or recommended for a redesign. To ensure the effectiveness of 
the proposed approach, some few practical examples have been presented in this study.

Case 1 Let us consider a multi-criteria decision-making problem originally presented by 
Ye (2010a) to make a new example for failure detection.
A design company wants to identify to-be-improved product components in a com-
plex product and system in which the components are interdependent on each other. 
Four operational components Ai(i = 1, 2, . . . 4) have been identified. However to ensure 
the reliability of the components as an important part of it usage data, the failure data 
accumulated during the usage period are evaluated to guide redesign procedure. The 
components are evaluated by three experts with equal expertise. The failure modes of 
each component are evaluated with respect to three criteria; Severity, occurrence and 
detection and the data are aggregated to form the intuitionistic fuzzy decision matrix 
DM4x3(aij) as shown Table 1 below.

Using the exponential-related function in Eq.  (10), the intuitionistic fuzzy decision 
matrix DM4x3(aij) is converted to form the exponential related matrix ERM4x3

(

ERij

(

aij
))

 
as show in the Table 2. Also, by following the implementation procedure for the intui-
tionistic fuzzy entropy, the weights of the criteria are determined, the weight results for 
the three criteria are given as W = {0.313, 0.377, 0.311} respectively.

Finally, by using Eqs.  (16) and (17), the exponential related function-based separa-
tion measures d+i (A

+,Ai) and d−i (A
−,Ai) (i = 1, 2, . . . , 16) is calculated, also the rela-

tive closeness coefficient CCi, (i = 1, 2, . . . , 16) to the ideal solution is calculated using 
Eq. (18). The results are shown in Table 2.

The ranking of the failure modes for the four components as shown in Table 2 is in 
agreement with the result obtained in (Ye 2010a).

Case 2 Let us consider a practical failure detection problem originally presented by 
Chang and Wen (2010) and adopted by Liu et al. (2015). In this case, the original prob-
lem has been slightly modified to make a new example.

Table 1 Intuitionistic fuzzy decision matrix for the product components

Product components Severity Occurrence Detection

PC1 (0.45, 0.35) (0.50, 0.30) (0.20, 0.55)

PC2 (0.65, 0.25) (0.65, 0.25) (0.55, 0.15)

PC3 (0.45, 0.35) (0.55, 0.35) (0.55, 0.20)

PC4 (0.75, 0.15) (0.65, 0.20) (0.35, 0.15)

Table 2 The exponentially related matrix, the distance measures and  the relative close‑
ness coefficients of the failure modes for the four components

Product components Severity ER Occurrence ER Detection ER d
+

i
d
−

i
CCi Ranking

PM1 0.418 0.386 0.348 0.357 0.224 0.385 4

PM2 0.316 0.316 0.342 0.393 0.188 0.324 1

PM3 0.418 0.378 0.348 0.359 0.222 0.382 3

PM4 0.264 0.309 0.410 0.393 0.191 0.327 2



Page 10 of 15Aikhuele and Turan  SpringerPlus  (2016) 5:1938 

A design company wants to identify to-be-improved product components in a com-
plex product and system in which the components are interdependent on each other. 
Sixteen operational components Ai(i = 1, 2, . . . 16) have been identified through tradi-
tional QFD method. However to ensure the reliability of the components as an impor-
tant part of it usage data, the failure data accumulated during the usage period are 
evaluated to guide redesign procedure. The components are evaluated by three experts 
with equal expertise. The failure modes of each component are evaluated with respect 
to three criteria; Severity, occurrence and detection and the data are aggregated to form 
the intuitionistic fuzzy decision matrix DMnxm(aij) as shown Table 3 below.

Using the exponential-related function in Eq.  (10), the intuitionistic fuzzy deci-
sion matrix DM16x3(aij) is converted to form the exponential related matrix 
ERM16x3

(

ERij

(

aij
))

 as show in the Table 4. Also, by following the implementation proce-
dure for the intuitionistic fuzzy entropy, the weights of the criteria are determined, the 
weight results for the three criteria are given as W = {0.232, 0.349, 0.419} respectively.

Finally, by using Eqs.  (16) and (17), the exponential related function-based separa-
tion measures d+i (A

+,Ai) and d−i (A
−,Ai) (i = 1, 2, . . . , 16) is calculated, also the rela-

tive closeness coefficient CCi, (i = 1, 2, . . . , 16) to the ideal solution is calculated using 
Eq. (18). The results are shown in Table 4.

Comparison and discussion
To further demonstrate the effectiveness of our proposed model for failure detection, 
we compare the results of the example in case 4 by analyzing the case with some similar 
computational approaches including the fuzzy TOPSIS model by Braglia et  al. (2003), 
the integrated weight-based fuzzy TOPSIS (IWF-TOPSIS) by Song et  al. (2013), the 
intuitionistic fuzzy hybrid TOPSIS (IFH-TOPSIS) approach by Liu et al. (2015) and the 
risk priority number (RPN) method. The final ranking results are shown in Table 5.

Table 3 Intuitionistic fuzzy decision matrix for the product components

Product components Severity Occurrence Detection

PM1 (0.337, 0.543) (0.566, 0.290) (0.386, 0.516)

PM2 (0.380, 0.514) (0.467, 0.467) (0.418, 0.495)

PM3 (0.421, 0.490) (0.645, 0.204) (0.124, 0.739)

PM4 (0.519, 0.383) (0.472, 0.464) (0.373, 0.519)

PM5 (0.329, 0.548) (0.540, 0.344) (0.244, 0.636)

PM6 (0.235, 0.626) (0.540, 0.344) (0.277, 0.598)

PM7 (0.129, 0.733) (0.623, 0.218) (0.148, 0.715)

PM8 (0.171, 0.678) (1.000, 0.000) (0.240, 0.629)

PM9 (0.472, 0.464) (0.495, 0.413) (0.161, 0.696)

PM10 (0.579, 0.268) (0.556, 0.312) (0.519, 0.383)

PM11 (0.279, 0.587) (0.553, 0.335) (0.337, 0.543)

PM12 (0.400, 0.500) (0.606, 0.256) (0.358, 0.528)

PM13 (0.287, 0.582) (0.636, 0.208) (0.532, 0.377)

PM14 (0.306, 0.563) (0.524, 0.371) (0.232, 0.635)

PM15 (0.421, 0.490) (0.522, 0.400) (0.051, 0.822)

PM16 (0.376, 0.520) (0.447, 0.477) (0.358, 0.528)
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The rankings of the different approaches show that they are almost in agreement with 
our proposed approach. The result shows that except for PMs 6, 7, 10, 13 and 15, the 
failure modes for other PM obtained by our proposed method are different from those 
obtained using the conventional RPN method. However, the difference is as a result of 
the limitation in FMEA method as mentioned in “Background” section.

The advantages of the proposed method in this study over the conventional FMEA 
methods (RPN) can be summarized to include;

Table 4 The exponentially related matrix, the distance measures and  the relative close‑
ness coefficients of the failure modes for the product components

Product components Severity ER Occurrence ER Detection ER d
+

i
d
−

i
CCi Ranking

PM1 0.543 0.358 0.509 0.322 0.278 0.463 4

PM2 0.511 0.453 0.486 0.309 0.284 0.478 6

PM3 0.482 0.312 0.770 0.285 0.358 0.557 13

PM4 0.401 0.450 0.516 0.312 0.283 0.476 5

PM5 0.549 0.381 0.640 0.284 0.325 0.534 11

PM6 0.634 0.381 0.600 0.286 0.320 0.528 10

PM7 0.763 0.322 0.739 0.266 0.374 0.584 15

PM8 0.697 0.167 0.635 0.336 0.317 0.485 7

PM9 0.450 0.421 0.717 0.267 0.350 0.567 14

PM10 0.348 0.367 0.401 0.367 0.226 0.381 1

PM11 0.592 0.373 0.543 0.306 0.296 0.492 8

PM12 0.496 0.335 0.527 0.327 0.275 0.457 3

PM13 0.585 0.316 0.394 0.362 0.240 0.399 2

PM14 0.566 0.395 0.643 0.278 0.330 0.543 12

PM15 0.482 0.405 0.888 0.244 0.413 0.628 16

PM16 0.515 0.466 0.527 0.294 0.299 0.504 9

Table 5 Ranking of failure in a complex product using different approaches

Product components Proposed model Fuzzy TOPSIS model IWF-TOPSIS IFH-TOPSIS RPN method

PM1 4 9 10 7 6

PM2 6 13 8 9 10

PM3 13 4 5 5 9

PM4 5 6 2 6 3

PM5 11 11 11 11 14

PM6 10 15 14 15 10

PM7 15 16 16 16 15

PM8 7 2 15 4 13

PM9 14 7 3 8 8

PM10 1 1 1 1 1

PM11 8 10 13 10 6

PM12 3 3 4 3 4

PM13 2 5 7 2 2

PM14 12 14 12 14 10

PM15 16 10 9 13 16

PM16 9 15 6 12 5
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  • The ability of the new method to reflected and modeled the fuzziness and hesitation 
of the experts’ subjective assessments of the failure modes with the application of the 
exponential-related function.

  • The method considers not only the deviation between the membership and non-
membership degrees as obtainable in other intuitionistic methods but considers also 
the hesitancy degree of the IFS.

  • The results from the proposed method for failure detection are more objective and 
reliable because the criteria weights were determined using an objective weight 
approach.

  • The implementation procedures of the proposed model and approach are easy and 
straightforward as compared to the other Multi-criteria decision-making methods 
and TOPSIS approaches compared in this study.

Conclusion
The main goal of any product redesigning exercise is to create new products and sys-
tems that meet the customer requirements as well as the product reliability. In identify-
ing product component(s) to be redesigned, the customer/user requirements which are 
mainly considered and achieved through customer surveys using the quality function 
deployment (QFD) tool, often fail to guarantee or cover aspects of the product reliability. 
Even when they do, there are always many misunderstandings.

To improve the product reliability and quality during the product redesigning phase 
and to create that novel product(s) for the customers, the failure or potential fail-
ure information of the existing product, and its component(s) should ordinarily be 
identified and analyzed. In this study, we have presented an intuitionistic fuzzy TOP-
SIS model which is based on an exponential-related function for building appropriate 
design knowledge about the to-be-improved or redesigned product component by ana-
lyzing the historical failure information about the product with the view to prioritizing 
the failure modes and to provide the designer with relevant information to be used in 
improving the product reliability and quality during the product designing phase. The 
exponential related-based function has been used for the computation of the separation 
measures from the intuitionistic fuzzy positive ideal solution (IFPIS) and intuitionistic 
fuzzy negative ideal solution (IFNIS) and for ranking the alternatives. The new expo-
nential related-based function not only considers the deviation between the member-
ships and the non-membership degrees but also considers the hesitancy degree of the 
intuitionistic fuzzy set (IFS). The weight of the evaluating criteria in this study has been 
determined using the intuitionistic fuzzy entropy originally proposed by Ye (2010a, b).

To demonstrate the effectiveness of the proposed approach for failure detection, two prac-
tical case studies have been presented and evaluated using the proposed approach. Also, the 
results from the different case study have been compared with some similar computational 
approaches such as; the conventional Fuzzy TOPSIS model, the integrated weight-based 
fuzzy TOPSIS (IWF-TOPSIS) model, the intuitionistic fuzzy hybrid TOPSIS (IFH-TOPSIS) 
approach and finally with the conventional risk priority number (RPN) method.

Finally, we can conclude that the new approach proposed in this study, provides a bet-
ter alternative method for failure identification and analysis as it allows for the fuzziness 
and hesitation of the experts’ subjective assessments to be reflected and modeled in the 
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evaluation. Also, in applying the proposed model, the particular fault area, and the failed 
component can easily be identified. In the future, it is recommended that the proposed 
approach should be applied in solving other multi-criteria decision-making problems 
with special reference to the two ranking order for the two exponential related functions.
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