27 research outputs found

    Forecasts for Low Spin Black Hole Spectroscopy in Horndeski Gravity

    Full text link
    We investigate the prospect of using black hole spectroscopy to constrain the parameters of Horndeski gravity through observations of gravitational waves from perturbed black holes. We study the gravitational waves emitted during ringdown from black holes without hair in Horndeski gravity, demonstrating the qualitative differences between such emission in General Relativity and Horndeski theory. In particular, Quasi-Normal Mode frequencies associated with the scalar field spectrum can appear in the emitted gravitational radiation. Analytic expressions for error estimates for both the black hole and Horndeski parameters are calculated using a Fisher Matrix approach, with constraints on the `effective mass' of the Horndeski scalar field of order 1017\sim 10^{-17}eVc2c^{-2} or tighter being shown to be achievable in some scenarios. Estimates for the minimum signal-noise-ratio required to observe such a signal are also presented.Comment: Updated to match published versio

    Kerr-(Anti-)de Sitter Black Holes: Perturbations and quasi-normal modes in the slow rotation limit

    Full text link
    We study the perturbations of scalar, vector, and tensor fields in a slowly rotating Kerr-(Anti-)de Sitter black hole spacetime, presenting new and existing Schr\"odinger style master equations for each type of perturbation up to linear order in black hole spin aa. For each type of field we calculate analytical expressions for the fundamental quasi-normal mode frequencies. These frequencies are compared to existing results for Schwarzschild-de Sitter, slowly rotating Kerr, and slowly rotating Kerr-de Sitter black holes. In all cases good agreement is found between the analytic expressions and those frequencies calculated numerically. In addition, the axial and polar gravitational frequencies are shown to be isospectral to linear order in aa for all cases other than for both non-zero aa and Λ\Lambda.Comment: Updated to match published versio

    A covariant approach to parameterised cosmological perturbations

    Full text link
    We present a covariant formulation for constructing general quadratic actions for cosmological perturbations, invariant under a given set of gauge symmetries for a given field content. This approach allows us to analyse scalar, vector and tensor perturbations at the same time in a straightforward manner. We apply the procedure to diffeomorphism invariant single-tensor, scalar-tensor and vector-tensor theories and show explicitly the full covariant form of the quadratic actions in such cases, in addition to the actions determining the evolution of vector and tensor perturbations. We also discuss the role of the symmetry of the background in identifying the set of cosmologically relevant free parameters describing these classes of theories, including calculating the relevant free parameters for an axisymmetric Bianchi-I vacuum universe.Comment: Updated to match published versio

    Anomalous decay rate of quasinormal modes

    Full text link
    The decay timescales of the quasinormal modes of a massive scalar field have an intriguing behavior: they either grow or decay with increasing angular harmonic numbers \ell, depending on whether the mass of the scalar field is small or large. We identify the properties of the effective potential of the scalar field that leads to this behavior and characterize it in detail. If the scalar field is non-minimally coupled, considered here, the scalar quasinormal modes will leak into the gravitational wave signal and will have decaying times that are comparable or smaller than those typical in General Relativity. Hence, these modes could be detectable in the future. Finally, we find that the anomalous behavior in the decay timescales of quasinormal modes is present in a much larger class of models beyond a simple massive scalar field.Comment: Updated to published versio

    Detection of Head-to-Tail DNA Sequences of Human Bocavirus in Clinical Samples

    Get PDF
    Parvoviruses are single stranded DNA viruses that replicate in a so called “rolling-hairpin” mechanism, a variant of the rolling circle replication known for bacteriophages like ϕX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    Get PDF
    Correction: Volume: 10 Issue: 1 Article Number: 44 DOI: 10.1186/s13601-020-00351-w Published: OCT 26 2020Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
    corecore