45 research outputs found

    Adiponectin and leptin: new targets in inflammation

    Get PDF
    Inflammation is a complex mechanism of cell/tissue responses to injuries triggered by multiple causes, including trauma, pathogens or autoimmune abnormal responses. In the last years, a novel line of thought is emerging by giving a more holistic vision of chronic arthropathies through a recently identified group of molecules, called adipokines. Actually, most of these recently identified factors, produced prevalently by white adipose tissue but also by cells of the joints (chondrocytes and synovial fibroblasts) and immune cells, play a significant role in chronic inflammation. Adipokines dysregulation has emerged as a common characteristic of chronic inflammation in rheumatic diseases in particular when obesity or, more precisely, adipose tissue dysfunction is associated with common rheumatic diseases, such as osteoarthritis and rheumatoid arthritis. In this MiniReview, we discuss the role of adipokines in osteoarthritis and rheumatoid arthritis providing an updated overview of their pathophysiological role and potential use as therapeutic targets

    Periodontitis induced by bacterial infection exacerbates features of Alzheimer\u27s disease in transgenic mice.

    Get PDF
    Periodontitis is a localized infectious disease caused by periodontopathic bacteria,such as Porphyromonas gingivalis. Recently, it has been suggested that bacterial infections may contribute to the onset and the progression of Alzheimer’s disease (AD). However, we do not have any evidence about a causative relationship between periodontitis and AD. In this study, we investigated by using a transgenic mouse model of AD whether periodontitis evoked by P. gingivalis modulates the pathological features of AD. Cognitive function was significantly impaired in periodontitis-induced APP-Tg mice, compared to that in control APP-Tg mice. Levels of Amiloid β (Aβ) deposition, Aβ40, and Aβ42 in both the hippocampus and cortex were higher in inoculated APP-Tg mice than in control APP-Tg mice. Furthermore, levels of IL-1β and TNF-α in the brain were higher in inoculated mice than in control mice. The levels of LPS were increased in the serum and brain of P. gingivalis-inoculated mice. P. gingivalis LPS-induced production of Aβ40 and Aβ42 in neural cell cultures and strongly enhanced TNF-α and IL-1β production in a culture of microglial cells primed with Aβ. Periodontitis evoked by P. gingivalismay exacerbate brain Aβ deposition, leading to enhanced cognitive impairments, by a mechanism that involves triggering brain inflammation

    Tertiary Lymphoid Structures:Autoimmunity Goes Local

    Get PDF
    Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development

    Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response

    No full text
    OBJECTIVE: To determine the role of leptin in modulating Th17 cell response and joint inflammation in mice with collagen-induced arthritis (CIA). METHODS: Leptin receptor expression on T cells was examined by polymerase chain reaction (PCR) analysis, immunofluorescence microscopy, and flow cytometry. Effects of leptin on Th17 cell differentiation and proliferation were evaluated by quantitative PCR, carboxyfluorescein diacetate succinimidyl ester proliferation assay, and flow cytometry. Dynamic changes in leptin concentrations in the joint tissue and synovial fluid of mice with CIA were determined by immunohistochemistry analysis and enzyme-linked immunosorbent assay (ELISA). Arthritis symptoms and joint pathology in mice with CIA were assessed after injection of leptin into the knee joint. Th1 and Th17 cell populations in the spleen, draining lymph nodes, and joint tissue were analyzed by flow cytometry and enzyme-linked immunospot assay. Interleukin-17 messenger RNA and protein levels in the joint tissue were measured by PCR analysis and ELISA. RESULTS: In culture, leptin treatment significantly increased Th17 cell generation from naive CD4+ T cells. During CIA development, markedly elevated levels of leptin were detected in the joint tissue and synovial fluid. Moreover, injection of leptin into the knee joint of collagen-immunized mice resulted in an early onset of arthritis and substantially increased the severity of clinical symptoms, accompanied by more pronounced synovial hyperplasia and joint damage. Further examination by immunofluorescence microscopy confirmed the presence of significantly increased numbers of Th17 cells in the joint tissue and draining lymph nodes of leptin-treated mice with CIA. CONCLUSION: The results of this study identify a previously undescribed function of leptin in enhancing Th17 cell response and exacerbating joint inflammation in mice with CIA.link_to_OA_fulltex
    corecore