66 research outputs found

    On the structural changes in the Brewer-Dobson circulation after 2000

    Get PDF
    In this paper we present evidence that the observed increase in tropical upwelling after the year 2000 may be attributed to a change in the Brewer-Dobson circulation pattern. For this purpose, we use the concept of transit times derived from residual circulation trajectories and different in-situ measurements of ozone and nitrous dioxide. Observations from the Canadian midlatitude ozone profile record, probability density functions of in-situ N2O observations and a shift of the N2O-O3 correlation slopes, taken together, indicate that the increased upwelling in the tropics after the year 2000 appears to have triggered an intensification of tracer transport from the tropics into the extratropics in the lower stratosphere below about 500 K. This finding is corroborated by the fact that transit times along the shallow branch of the residual circulation into the LMS have decreased for the same time period (1993–2003). On a longer time scale (1979–2009), the transit time of the shallow residual circulation branch show a steady decrease of about −1 month/decade over the last 30 years, while the transit times of the deep branch remain unchanged. This highlights the fact that a change in the upwelling across the tropical tropopause is not a direct indicator for changes of the whole Brewer-Dobson circulation

    Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions

    Get PDF
    Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as ‘exceptional events’, which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<−1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events

    Estimating Wildfire-Generated Ozone over North America Using Ozonesonde Profiles and a Differential Back Trajectory Technique

    Get PDF
    An objective method, employing HYSPLIT back-trajectories and Moderate Resolution Imaging Spectroradiometer (MODIS) fire observations, is developed to estimate ozone enhancement in air transported from regions of active forest fires at 18 ozone sounding sites located across North America. The Differential Back Trajectory (DBT) method compares mean differences between ozone concentrations associated with fire-affected and fire-unaffected parcels. It is applied to more than 1100 ozonesonde profiles collected from these sites during the summer months June to August 2006, 2008, 2010 and 2011. Layers of high ozone associated with low humidity were first removed from the ozonesonde profiles to minimize the potential effects of stratospheric intrusions on the calculations. No significant influence on average ozone levels by North American fires was found for stations located at Arctic latitudes. The ozone enhancement for stations nearer large fires, such as Trinidad Head and Bratt\u27s Lake, was up to 4.8% of the TTOC (Total Tropospheric Ozone Column). Fire ozone accounted for up to 8.3% of TTOC at downwind sites such as Yarmouth, Sable Island, Narragansett, and Walsingham. The results are consistent with other studies that have reported an increase in ozone production with the age of the smoke plume

    Pan-Arctic surface ozone: modelling vs. measurements

    Get PDF
    Within the framework of the International Arctic Systems for Observing the Atmosphere (IASOA), we report a modelling-based study on surface ozone across the Arctic. We use surface ozone from six sites – Summit (Greenland), Pallas (Finland), Barrow (USA), Alert (Canada), Tiksi (Russia), and Villum Research Station (VRS) at Station Nord (North Greenland, Danish realm) – and ozone-sonde data from three Canadian sites: Resolute, Eureka, and Alert. Two global chemistry models – a global chemistry transport model (parallelised-Tropospheric Offline Model of Chemistry and Transport, p-TOMCAT) and a global chemistry climate model (United Kingdom Chemistry and Aerosol, UKCA) – are used for model data comparisons. Remotely sensed data of BrO from the GOME-2 satellite instrument and ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) at Eureka, Canada, are used for model validation. The observed climatology data show that spring surface ozone at coastal sites is heavily depleted, making ozone seasonality at Arctic coastal sites distinctly different from that at inland sites. Model simulations show that surface ozone can be greatly reduced by bromine chemistry. In April, bromine chemistry can cause a net ozone loss (monthly mean) of 10–20 ppbv, with almost half attributable to open-ocean-sourced bromine and the rest to sea-ice-sourced bromine. However, the open-ocean-sourced bromine, via sea spray bromide depletion, cannot by itself produce ozone depletion events (ODEs; defined as ozone volume mixing ratios, VMRs, < 10 ppbv). In contrast, sea-ice-sourced bromine, via sea salt aerosol (SSA) production from blowing snow, can produce ODEs even without bromine from sea spray, highlighting the importance of sea ice surface in polar boundary layer chemistry. Modelled total inorganic bromine (BrY) over the Arctic sea ice is sensitive to model configuration; e.g. under the same bromine loading, BrY in the Arctic spring boundary layer in the p-TOMCAT control run (i.e. with all bromine emissions) can be 2 times that in the UKCA control run. Despite the model differences, both model control runs can successfully reproduce large bromine explosion events (BEEs) and ODEs in polar spring. Model-integrated tropospheric-column BrO generally matches GOME-2 tropospheric columns within ∌ 50 % in UKCA and a factor of 2 in p-TOMCAT. The success of the models in reproducing both ODEs and BEEs in the Arctic indicates that the relevant parameterizations implemented in the models work reasonably well, which supports the proposed mechanism of SSA production and bromide release on sea ice. Given that sea ice is a large source of SSA and halogens, changes in sea ice type and extent in a warming climate will influence Arctic boundary layer chemistry, including the oxidation of atmospheric elemental mercury. Note that this work dose not necessary rule out other possibilities that may act as a source of reactive bromine from the sea ice zone

    Long-term changes in tropospheric ozone

    Get PDF
    Tropospheric ozone changes are investigated using a selected network of surface and ozonesonde sites to give a broad geographic picture of long-term variations. The picture of long-term tropospheric ozone changes is a varied one in terms of both the sign and magnitude of trends and in the possible causes for the changes. At mid latitudes of the S.H. three time series of ∌20 years in length agree in showing increases that are strongest in the austral spring (August–October). Profile measurements show this increase extending through the mid troposphere but not into the highest levels of the troposphere. In the N.H. in the Arctic a period of declining ozone in the troposphere through the 1980s into the mid-1990s has reversed and the overall change is small. The decadal-scale variations in the troposphere in this region are related in part to changes in the lowermost stratosphere. At mid latitudes in the N.H., continental Europe and Japan showed significant increases in the 1970s and 1980s. Over North America rises in the 1970s are less than those seen in Europe and Japan, suggesting significant regional differences. In all three of these mid latitude, continental regions tropospheric ozone amounts appear to have leveled off or in some cases declined in the more recent decades. Over the North Atlantic three widely separated sites show significant increases since the late-1990s that may have peaked in recent years. In the N.H. tropics both the surface record and the ozonesondes in Hawaii show a significant increase in the autumn months in the most recent decade compared to earlier periods that drives the overall increase seen in the 30-year record. This appears to be related to a shift in the transport pattern during this season with more frequent flow from higher latitudes in the latest decade

    Observation of large and all-season ozone losses over the tropics” [AIP Adv. 12, 075006 (2022)]

    Get PDF
    As discussed above, and supported by extensive literature, there is no robust, credible observational evidence for substantial ozone depletion (i.e., an “ozone hole”) in the tropics. It is well known that climatological total ozone in the tropics is much lower than that in the mid-latitudes (e.g., Sahai et al., 2000; Weber et al., 2022). Satellite and ozonesonde measurements indicate a 3%–5% per decade decline of tropical lower stratosphere ozone prior to 2000, far smaller than that reported by L2022. The stronger decline reported by L2022 is caused by inappropriate use of the gap-filled version of the TOST ozone dataset, which is based on sparse tropical ozone sondes before the 1990s. This misuse of data (TOST and total column ozone) shows the importance of collaboratively engaging with groups who obtain the measurements and create climatological datasets before performing such analyses. Furthermore, the study by L2022 has multiple flaws in its discussion of atmospheric chemistry and dynamics, particularly in the proposed, and previously refuted (see Sec. III A), cosmicray- driven electron induced (CRE) mechanism. Evidence for the occurrence of tropical stratospheric clouds, as needed for the tropical CRE mechanism, is lacking, nor do CFC-12 observations show signatures of depletion in the tropical lower stratosphere, which could be associated with dissociative electron attachment-induced loss of CFC-12 on particulate matter (i.e., the CRE mechanism). Finally, it is worth reiterating that the CRE mechanism is also not responsible for polar LS ozone depletion. Polar ozone loss can be well explained by the gas phase and heterogeneous chemistry, based on extensive observations and modeling studies documented in many thousands of scientific papers on the topic [e.g., see WMO (2018) and references therein], which is not acknowledged by L2022. L2022’s research paper is a severely flawed one. There is no tropical ozone hole, and the CRE mechanism does not explain observed changes in stratospheric ozone either in the polar regions or in the tropics

    Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties

    Get PDF
    From the earliest observations of ozone in the lower atmosphere in the 19th century, both measurement methods and the portion of the globe observed have evolved and changed. These methods have different uncertainties and biases, and the data records differ with respect to coverage (space and time), information content, and representativeness. In this study, various ozone measurement methods and ozone datasets are reviewed and selected for inclusion in the historical record of background ozone levels, based on relationship of the measurement technique to the modern UV absorption standard, absence of interfering pollutants, representativeness of the well-mixed boundary layer and expert judgement of their credibility. There are significant uncertainties with the 19th and early 20th-century measurements related to interference of other gases. Spectroscopic methods applied before 1960 have likely underestimated ozone by as much as 11% at the surface and by about 24% in the free troposphere, due to the use of differing ozone absorption coefficients. There is no unambiguous evidence in the measurement record back to 1896 that typical mid-latitude background surface ozone values were below about 20 nmol mol–1, but there is robust evidence for increases in the temperate and polar regions of the northern hemisphere of 30–70%, with large uncertainty, between the period of historic observations, 1896–1975, and the modern period (1990–2014). Independent historical observations from balloons and aircraft indicate similar changes in the free troposphere. Changes in the southern hemisphere are much less. Regional representativeness of the available observations remains a potential source of large errors, which are difficult to quantify

    Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Get PDF
    The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60˚N–60˚S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest

    Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research

    Get PDF
    Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics
    • 

    corecore