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I. INTRODUCTION

Lu (2022) (hereafter L2022) used the Trajectory-mapped
Ozonesonde dataset for the Stratosphere and Troposphere (TOST)
to argue that there has been very substantial ozone depletion (>80%)
in the tropical (30○S–30○N) lower stratosphere (LS) since the 1960s.
This was labeled a “large and all-season ozone hole.” Here, we show
that this claim is false due to erroneously large tropical ozone val-
ues in the interpolated sparse historical TOST data. In addition,
L2022 repeats the suggestion made in a number of the author’s
earlier papers that cosmic rays are involved in stratospheric ozone

depletion. This claim is also not valid; a huge body of work has
explained the observed stratospheric ozone depletion through a
well-established gas phase and heterogeneous chemistry following
the emission of ozone-depleting substances (ODSs) through human
activities.

We expand on these points below. In particular, we present a
simple analysis of the TOST dataset used by L2022 and show its
unsuitability for the application performed. In contrast, we then
summarize the much smaller observed variations in ozone in the
tropical LS based on many international efforts of data validation
and quality assurance, which are not cited by L2022. We then
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discuss flaws in the cosmic-ray electron-induced mechanism pro-
posed by L2022 as being the main driver of stratospheric ozone
losses.

II. OZONE IN THE TROPICAL LOWER STRATOSPHERE
A. TOST data used by L2022

The World Ozone and Ultraviolet Radiation Data Center
(WOUDC) website (https://woudc.org/data.php) hosts the TOST
data in two formats: (1) ozonesonde data at 1 km intervals in alti-
tude expanded with 4-day forward and backward trajectories to
increase spatial sampling (hereafter labeled TOST_RAW) and (2) a
smoothed, gap-filled version of TOST_RAW using linear interpo-
lation of maps (hereafter labeled TOST_SM). Methodologies used
to construct these two datasets are described by Liu et al. (2013a;
2013b). In brief, profile data from about 50 000 ozonesonde pro-
files (1965–2012) are spatially extended using backward and forward
trajectories from meteorological re-analyses to construct a global
ozone climatology. Both TOST_RAW and TOST_SM datasets are
provided in monthly, annual, and decadal means. L2022 does not
specify which TOST dataset is used in that study, but we infer below
(see Fig. 3 discussion) that it is TOST_SM. Thus, the ozone deple-
tion diagnosed by L2022 clearly depends entirely on the accuracy
and representativeness of the smoothed, gap-filled TOST_SM data
in the tropics, especially in the 1960s–1980s.

Figures 1 and 2 show the coverage of the raw trajectory-
extended ozonesonde data used to create the TOST datasets. The
observed data coverage in the tropics is poor from the 1960s to the
1980s [see also Table I, Fig. 8 of the study by Liu et al. (2013a),
and Figs. 1 and 12 of the study by Liu et al. (2013b)], which affects
the validity of the data created by the TOST_SM gap-filling algo-
rithm. Moreover, in the southern tropics (20○S–0○), where L2022
diagnosed the largest ozone depletion, the only observations in

FIG. 2. Number of trajectory-extended ozonesonde observations (per km per
month) in the TOST dataset in the latitude range 20○S–0○. Note the very sparse
sampling in the 1960s (except 1965), 1970s, and 1980s.

the 1960s are in 1965, and the data coverage is very sparse until
the late 1990s when a dedicated tropical ozonesonde network,
SHADOZ (Southern Hemisphere Additional Ozonesondes), was
initiated (Thompson et al., 2003). While the lack of tropical
ozonesonde observations is one severe limitation to diagnosing
ozone changes in this region, the problem is further compounded
by variable quality control and the instrument response at the differ-
ent sonde stations between the 1960s and 1980s [e.g., at Pune in the
1980s—see the study by Rohtash et al. (2016)]. Reprocessing of most
tropical ozonesonde data has greatly enhanced the quality of pro-
files (Thompson et al., 2017; Sterling et al., 2018), but those profiles
were not used in TOST. The limitations imposed by sparse data and
large data gaps are discussed in the TOST papers; for each altitude,

FIG. 1. Number of trajectory-extended
ozonesonde observations in the TOST
dataset for the September–October–
November (SON) season as a function
of longitude (○E) and latitude (○N) at a
grid resolution of 5○ × 5○ for six differ-
ent decades at 15 km. White indicates
no observations. Note the lack of trop-
ical observations in the 1960s–1980s,
especially south of the equator. Sampling
patterns for other seasons are similar.
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TABLE I. Number of ozonesonde profiles in the inner tropics (20○S–20○N) used in the study by Liu et al. (2013b) to construct
TOST datasets for the 1960s and 1970s.

Station ID Station name
Latitude

(○N)
Longitude

(○E) Period of observation
Number of

profiles

108 Canton Island −2.8 −171.7 1965 31
109 Hilo 19.6 −155.1 1964–1965 17
149 La Paz −16.5 −68 1965 10
187 Pune 18.5 73.8 1966–1976 135
205 Trivandrum 8.5 76.97 1969–1979 32
203 Ft. Sherman 9.3 −80 1977 16
206 Bombay 19.1 72.8 1968–1969 7
219 Natal −5.8 −35.2 1979 7
224 Chilca −12.5 −76.8 1975 3
225 Kourou 5.3 −52.7 1974 3
236 Coolidge Field 17.3 −61.8 1976 7

maps are provided, with the data showing the standard error and
the number of observations entering each TOST_RAW mean value.
Using this information, the user can judge the quality of individ-
ual TOST_RAW averages and filter as required for appropriately
robust data.

Figure 3 shows the differences in the TOST_SM and
TOST_RAW decadal means for the September–October–November
(SON) season, both between 2000 and 1960 and between 2000 and
1980. In addition to the simple difference between the TOST_SM
decadal means [Figs. 3(a) and 3(b)], we also calculate decadal mean
differences with the TOST_RAW data but filtered to only include
grid cells with a minimum number of data points in the calcula-
tion of the decadal mean: 10 [Figs. 3(c) and 3(d)] and 100 [Figs. 3(e)
and 3(f)]. Comparison of our Fig. 3 with the corresponding SON
panels in Figs. 1–3 of L2022 confirms that he analyzed the seasonal
mean decadal mean smoothed, gap-filled TOST_SM dataset [i.e., our
Figs. 3(a) and 3(b)]. These data show an apparent large depletion of
ozone in the TOST_SM data of up to 80% since the 1960s at around
17.5 km altitude and in the latitude range 20○S–0○. However, this
change in the smoothed, gap-filled TOST_SM data is an artifact of
the sparsely sampled tropical region, as noted above, and there is
no robust link to the available observations. In Figs. 3(c)–3(f), the
TOST_RAW data do not show such a large ozone decline, and in
Figs. 3(c) and 3(e), ozone even increases below 18 km.

The impact of smoothing on the sparse observations in
TOST_SM can be seen from the zonal mean climatology. Figure 4
compares decadal mean TOST data, as used by L2022, for both
the wider tropics (30○S–30○N) and the 20○S–0○ sub-region. The
smoothing in TOST_SM not only fills gaps but has also artificially
increased the mean ozone values in the tropical lower stratosphere.
In the absence of observations in the tropical region, ozone values
are interpolated from higher latitudes where ozone concentrations
are often higher than those in the tropics. This will lead to an
erroneously large diagnosed ozone change. This source of bias is
discussed in the first TOST paper (Tarasick et al., 2010). Even
small biases, if not addressed, can invalidate trend analyses. In
the study by Liu et al. (2013b), some simple trend calculations

FIG. 3. Difference in decadal mean zonal mean ozone for the SON season from
TOST datasets. (a) TOST_SM 2000 minus 1960, (b) TOST_SM 2000 minus 1980,
(c) TOST_RAW 2000 minus 1960 restricted to having at least ten trajectory points
in each grid cell (1 km × 5○ latitude) in the zonal mean decadal mean, (d)
TOST_RAW 2000 minus 1980 restricted to having at least ten TOST data points
per grid cell, (e) TOST_RAW 2000 minus 1960 restricted to having at least 100
TOST data points per grid cell, and (f) TOST_RAW 2000 minus 1980 restricted to
having at least 100 TOST data points. Panel (a) agrees well with the correspond-
ing panels in Figs. 1 and 2 of the study by L2022. Panel (b) agrees well with the
corresponding panel in Fig. 3 of the study by L2022.
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FIG. 4. Seasonal mean (SON) decadal mean O3 volume mixing ratio (parts per million) from TOST datasets for (top row) 30○S–30○N and (bottom row) 20○S–0○ and for (a)
and (d) TOST_RAW (using all datapoints without filtering), (b) and (e) smoothed, gap-filled TOST_SM, and (c) and (f) percentage difference TOST_SM minus TOST_RAW.
Note how the smoothing increases the ozone mixing ratio in these tropical averages during 1960–1980 compared to the raw data. Note that some decadal means, especially
for 20○S–0○ before the 1980s, are based on very few data points (see Figs. 1 and 2 and Table I).

are presented using the TOST_RAW dataset and after careful fil-
tering for adequate data density. These, unsurprisingly, agree well
with trends calculated from satellite and ground-based total ozone
measurements.

L2022 (his Fig. 5) showed that the TOST_SM data strongly
overestimate the independent data from GOZCARDS (Global
OZone Chemistry And Related trace gas Data records for the Strato-
sphere; Froidevaux et al., 2015) and BDBP (Binary DataBase of
Profiles; Hassler et al., 2008) until after the 1990s (plotted as anoma-
lies on different altitude levels). Given that both of these datasets
have more data points contributing to the monthly zonal mean
ozone in the 1980s and 1990s (from satellite data), this is further
evidence of bias in the TOST_SM data over the tropics for the 1990s,
1980s, and earlier.

B. Observed changes in tropical ozone
In addition to the limitations of the L2022 TOST analysis

described above, the results presented by that study are in strong
contradiction with the very large amount of research performed over
the last several decades. Changes and trends in both tropical total
column ozone and vertically resolved tropical LS ozone have been
shown and discussed in every Scientific Assessment of Ozone Deple-
tion since the early 1990s (WMO, 1992). L2022 states that “no O3
hole over the tropics has been reported” and cites the most recent
assessment (WMO, 2018). However, the reason for this is simple:
even with the modified definition of an ozone “hole” as created by
L2022 (i.e., a decrease in O3 by more than 25% relative to levels in
the 1960s), there is no evidence for such a decrease in the tropical
(20○S–20○N) lower stratosphere (100–70 hPa) from observational
records. Measurements of ozone in the tropical lower stratosphere
are derived from a multitude of ground- and space-based instru-
ments. Although the number of long-term records in the tropics
prior to 2000 is limited, particularly for vertically resolved profiles

covering the tropical upper troposphere-lower stratosphere (UTLS)
where natural variability is comparatively large, the analyses of these
data over the last few decades have painted a consistent picture of
how ozone has changed in this region.

Total column measurements from both ground stations and
satellites have routinely shown values that are mostly constant,
aside from variability (e.g., due to interannual dynamical varia-
tions). Tropical trends, using data records starting as far back as
the 1970s (Sahai et al., 2000), were first reported as negative with
a magnitude less than 2% per decade and having generally larger
uncertainties than their determined trend (e.g., Stolarski et al., 1991;
WMO, 1992 and references therein). These analyses have been
updated and refined over the years with similar results (e.g.,
Reinsel et al., 1994; 2005; Harris et al., 1997; Fioletov et al., 2002;
WMO, 2011; Chehade et al., 2014; Weber et al., 2018 and 2022).
While total column ozone may not be the best metric by which
changes in the tropical lowermost stratosphere could be assessed,
it is a reliable metric for assessing potential changes in surface
UV exposure. The total decrease in tropical total column ozone
is only about 1% between the 1964–1980 and 2017–2020 averages
(Weber et al., 2022), meaning that harmful UV surface exposure
remains mostly unchanged in the tropics until today, contrary to the
concerns brought forth by L2022. This small change in total ozone
is expected from positive trends in the tropical troposphere and
negative trends in the tropical LS [see WMO (2018) and references
therein].

Vertically resolved observations of the tropical UTLS prior
to 2000 came from a limited number of ground-based (mostly
ozonesondes) and satellite-based instruments. Trends in this region
are difficult to determine because of the large natural variability
that can complicate trend analyses (SPARC/IO3C/GAW, 2019 and
references therein), the limited spatial coverage of ground stations
with well-calibrated ozonesonde records, and the reduced vertical
resolution and increased measurement uncertainty of satellite data
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in the UTLS, depending on the measurement system (Hassler
et al., 2014). While there have been some variations in derived trends
over the years (e.g., McCormick et al., 1992; Wang et al., 1996;
2002; and Randel and Thompson, 2011), more recent results that
take advantage of longer records that have been largely consistent
as refinements to past datasets have become increasingly minor,
and analysis techniques have evolved (e.g., Harris et al., 2015 and
references therein; Steinbrecht et al., 2017; Ball et al., 2018; and
SPARC/IO3C/GAW, 2019 and references therein). Although uncer-
tainties are large, tropical lower stratospheric ozone trends derived
from both sondes and satellites are negative, with a magnitude of
roughly 3%–5% per decade for the period typically ranging from
1984 to 1997, and these trends remain negative thereafter, with
a magnitude of roughly 2% per decade for the period 2000–2020
(Thompson et al., 2021; Godin-Beekmann et al., 2022). These val-
ues are significantly smaller than the trends that are suggested by
Fig. 3 of L2022 (about −20% per decade). The limited amount of
measurement data prior to 1980 precludes the evaluation of trends
back to 1960, but chemistry–climate models have advanced to repli-
cate the long-term changes seen by observations reasonably well.
Figures 3–16 of WMO (2018) show both the observational and
model data at 70 hPa/19 km in the tropics, and model simulations
show an average total decrease in ozone at this level from 1970 to
2000 of ∼6%, where Fig. 2 of L2022 suggests a total decrease of
nearly 60%.

III. MECHANISM OF OZONE LOSS
Independent of our assertion that there has not been large

ozone depletion over the tropics (Sec. II), many aspects of strato-
spheric chemistry and dynamics presented by L2022 to explain this
apparent depletion are incorrect and require some comment. L2022
did not consider any of the other mechanisms for ozone changes
in the tropical UTLS that have been widely discussed in the ozone
community (e.g., WMO, 2018; Dietmüller et al., 2021). In par-
ticular, circulation changes [strengthening of the Brewer–Dobson
circulation (BDC), i.e., increases in tropical upwelling and enhanced
mixing between tropics and subtropics (Ball et al., 2020)] related
to increasing greenhouse gases (GHGs) are the main drivers of
the small ozone decreases in this region (e.g., Eyring et al., 2010;
Dhomse et al., 2018; and Dietmüller et al., 2021). It is worth noting
that recent analyses of observations support such an explanation for
tropical lower stratospheric ozone loss. When a coordinate trans-
formation is performed to look at trends relative to the tropopause
height for either ground- (Thompson et al., 2021) or space-based
(Bognar et al., 2022) observations, the negative trends just above
the tropopause largely disappear, showing how dynamically driven
trends in the tropopause region (Pisoft et al., 2021) are primarily
responsible for these ozone trends.

A. CRE model
The cosmic-ray-driven electron-induced (CRE) mechanism is

not the cause of stratospheric ozone depletion in the polar regions or
elsewhere. This mechanism has been thoroughly rebutted in previ-
ous comments on the author’s papers (e.g., Harris et al., 2002; Patra
and Santhanam, 2002; Müller, 2003; Müller and Grooß, 2009 and
2014; Grooß and Müller, 2011 and 2013; and Nuccitelli et al., 2014).

L2022 correlates ozone time series with a proxy represent-
ing cosmic-ray-driven ozone losses (“CRE model”), through his
Figs. 6(a) and 6(b). The CRE model proxy time series is not clearly
distinguishable from the superposition of ODS (ozone-depleting
substance) changes [given by effective equivalent stratospheric
chlorine (EESC)] and solar irradiance changes (solar activity).
Figure 5(a) shows the CRE model proxy from the study by L2022
(digitized from his figure) along with the best fit of the EESC and
Mg II UV solar irradiance activity index. The correlation of the
SH polar CRE model proxy with the combined polar EESC and
solar proxy is 0.96. The correlation is lower (0.74) in the tropical
region.

Both EESC and solar activity are well-known drivers of ozone
changes (e.g., WMO, 2018). It is known that the cosmic ray flux is
modulated by solar activity, meaning that strong solar winds dur-
ing solar maximum activity shield the earth from cosmic rays such
that the cosmic ray flux is anticorrelated with solar flux variations
(e.g., Usoskin et al., 2005). This means that the decadal variation
in total ozone can be explained by solar irradiance variation. The
solar radiative effect on total ozone is well-established and in agree-
ment with model simulations (e.g., Labitzke and van Loon, 1988;
Maycock et al., 2018; and Dhomse et al., 2022).

Figures 6(a) and 6(b) in the study by L2022 used total ozone
data from different sources (Total Ozone Mapping Spectrometer,
Ozone Monitoring Instrument, and Ozone Mapping and Profiler
Suite) without removing potential biases and drifts between the
datasets, a step that is essential for accurate diagnosis of trends.
Figure 5(b) shows the tropical total ozone time series, which is
a median of five merged long-term total ozone datasets from the
study by Weber et al. (2022). The median total ozone is consider-
ably lower in the 1980s than what is shown in Fig. 6(b) of the study
by L2022. The combination of EESC and the Mg II index can be
reasonably fitted to the median total ozone, and additional factors
such as the CRE mechanism are not needed to explain the variabil-
ity in tropical total ozone. Some additional variability in tropical
ozone is related to volcanic eruptions (Agung in 1963; El Chichón
in 1982; and Mt. Pinatubo in 1991) that lead to stratospheric ozone
depletion in the tropics due to heating and heterogeneous reactions
on aerosol particles (e.g., Schoeberl et al., 1993; Kilian et al., 2020).
These volcanic influences also coincided with the maximum phases
in the solar cycle. Statistical analyses of ozone trends have found
aliasing of the solar cycle and volcanic impacts (Chiodo et al., 2014;
Damadeo et al., 2014; Dhomse et al., 2016; and Kuchar et al., 2017),
and therefore, attribution of ozone trends has to be performed
carefully.

For the above-mentioned reasons, a simple correlation of ozone
with the CRE model proxy cannot be used as any proof of the
cosmic-ray-driven electron-induced (CRE) mechanism.

B. Observations of CFC-12 and the tropopause
To support the explanation of chemical tropical ozone deple-

tion via the CRE mechanism, L2022 used measurements of CFC-12
[his Fig. 4(d)] from the Cryogenic Limb Array Etalon Spectrome-
ter (CLAES, incorrectly referred to as CLEAS throughout L2022)
onboard the Upper Atmosphere Research Satellite (UARS). L2022
states that “the CFC-12 concentration was depleted in the lower
stratosphere below 25 km over the tropics (at latitudes 30○S–30○N),
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FIG. 5. (a) Normalized CRE model proxy, digitized from Figs. 6(a) and 6(b) in the study by L2022, in the tropics and SH polar region along with the best fits of EESC
and solar UV activity proxy (Mg II index). EESC is obtained from the NASA automailer (https://acd-ext.gsfc.nasa.gov/Data_services/automailer/index.html) and assumes a
mean age-of-air of 5.5 years and a width of 2.75 years in the polar region and 3.5 and 1.5 years outside the polar regions, e.g., tropics. The Mg II index is obtained from
https://www.iup.uni-bremen.de/UVSAT/Datasets/mgii. (b) Median total ozone time series from five merged total ozone datasets (Weber et al., 2022) and the best fit of EESC
and solar activity proxy (Mg II index). Due to the major impact of the Mt. Pinatubo volcanic eruption in 1991, the period 1991–1994 was excluded from the fit.

most significant in the zone at 16–20 km and at 20○S–20○N, in which
correspondingly the circularly symmetric annual mean tropical O3
hole is centrally located.” This statement is wrong on two counts.
First, the tropical tropopause is located at about 17–18 km (e.g.,
Hoffmann and Spang, 2022), so measurements below the tropopause
(i.e., in the troposphere) are not relevant for the stratospheric CRE
mechanism. Above 18 km, in the inner tropics (10○S–10○N), CFC-
12 is rather constant [about 472 ppt, L2022 Fig. 4(d)], as expected
based on its atmospheric lifetime of many decades in this region
(Chipperfield et al., 2014). Lower values of CFC-12 toward the
mid-latitudes are caused by in-mixing of mid-latitude air into the
tropics (e.g., Butchart et al., 2010; Abalos et al., 2015 and 2021;
Ploeger et al., 2021; and Poshyvailo-Strube et al., 2022). Second,
the CRE mechanism is based on the destruction of CFC-12 (and
other species) on atmospheric cloud particles by dissociative elec-
tron attachment (DEA) (L2022; Lu and Sanche, 2001). According
to the CRE mechanism, the lifetime of CFC-12 in the presence
of particles is hours (Lu and Sanche, 2001; Müller, 2003), so the
action of the CRE mechanism in the tropics should lead to (patchy)
areas with very low CFC-12 presence in association with clouds.
Such low presence of CFC-12 in the tropical lower stratosphere is
not obvious in either Fig. 4(d) of the study by L2022 or in any
other CFC-12 measurement datasets that we are aware of (e.g.,
Tegtmeier et al., 2016).

L2022 also states that “significant decompositions of CFCs and
N2O but not CH4 occur in the lower Antarctic stratosphere during
winter.” This statement is in contradiction with the observation
that N2O and CH4 are well correlated throughout the stratosphere,
consistent with a similar (photochemical) loss mechanism for both
species in the stratosphere (e.g., Michelsen et al., 1998). Mixing
ratios of N2O are indeed particularly low in the polar regions (espe-
cially in winter), which is an effect caused by transport through the
Brewer–Dobson circulation (BDC) and the descent of stratospheric
air in polar regions. This polar descent is obvious in measurements
of both N2O and CH4 (e.g., Müller et al., 1999; Ray et al., 2002; and
Strahan et al., 2015).

C. Stratospheric circulation
L2022 repeats a statement made similarly in previous papers

by the author (e.g., Lu, 2013), namely, “the transport lag times of
CFCs from the troposphere to the lower stratosphere over the Antarc-
tic and the tropics, [. . .] are about 1 year and 10 years, respectively.”
This issue has already been debated and shown to be flawed (Müller
and Grooß, 2014 and references therein). The erroneous informa-
tion repeated by L2022 is in contrast to many observations and
the theoretical understanding that the stratospheric BDC constitutes
young air entering the stratosphere in the tropics. The stratospheric
air is transported upward in the (leaky) tropical pipe (e.g., Neu and
Plumb, 1999; Butchart, 2014) and then poleward in the lower and
upper branches of the BDC, leading to the largest mean ages (of the
order of four years) in the polar regions (e.g., Bönisch et al., 2011;
Ploeger et al., 2021; and Poshyvailo-Strube et al., 2022). These mis-
conceptions of L2022 might contribute to his incorrect interpreta-
tion of tropical lower stratospheric chlorine and ozone chemistry. A
full summary and explanations of the atmospheric processes respon-
sible are provided in the scientific ozone assessments (WMO, 2014,
Chap. 2; WMO, 2018, Chap. 3).

D. Tropical stratospheric clouds (TSCs)
The stratospheric CRE mechanism relies on the presence of

particles in the stratosphere, referred to as TSCs by L2022. How-
ever, there is little observational evidence for clouds in the tropical
lower stratosphere; while temperatures there are low, the abun-
dance of condensable material (in particular water vapor) is also
very low (e.g., Brewer, 1949; Lu et al., 2020). Thus, ice clouds are
not frequently observed in the tropics. Peter et al. (2003) observed
subvisible, large-scale cirrus clouds, referred to as Ultrathin Tropical
Tropopause Clouds (UTTCs), a few hundred meters below the trop-
ical cold point tropopause. Zou et al. (2022) report that observations
indicate the occurrence of ice clouds with cloud-top heights of only
250 m above the first lapse rate tropopause in the tropics. There-
fore, any processes related to a tropical CRE mechanism (which is
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assumed by L2022 to be relevant for altitudes in the tropical strato-
sphere up to 25 km) could only occur infrequently and close to the
tropopause because of the lack of particle surface area density in the
tropical lower stratosphere.

IV. SUMMARY
As discussed above, and supported by extensive literature,

there is no robust, credible observational evidence for substan-
tial ozone depletion (i.e., an “ozone hole”) in the tropics. It is
well known that climatological total ozone in the tropics is much
lower than that in the mid-latitudes (e.g., Sahai et al., 2000;
Weber et al., 2022). Satellite and ozonesonde measurements indi-
cate a 3%–5% per decade decline of tropical lower stratosphere
ozone prior to 2000, far smaller than that reported by L2022.
The stronger decline reported by L2022 is caused by inappropriate
use of the gap-filled version of the TOST ozone dataset, which is
based on sparse tropical ozone sondes before the 1990s. This mis-
use of data (TOST and total column ozone) shows the importance
of collaboratively engaging with groups who obtain the measure-
ments and create climatological datasets before performing such
analyses.

Furthermore, the study by L2022 has multiple flaws in its
discussion of atmospheric chemistry and dynamics, particularly
in the proposed, and previously refuted (see Sec. III A), cosmic-
ray-driven electron induced (CRE) mechanism. Evidence for the
occurrence of tropical stratospheric clouds, as needed for the tropi-
cal CRE mechanism, is lacking, nor do CFC-12 observations show
signatures of depletion in the tropical lower stratosphere, which
could be associated with dissociative electron attachment-induced
loss of CFC-12 on particulate matter (i.e., the CRE mechanism).
Finally, it is worth reiterating that the CRE mechanism is also
not responsible for polar LS ozone depletion. Polar ozone loss
can be well explained by the gas phase and heterogeneous chem-
istry, based on extensive observations and modeling studies docu-
mented in many thousands of scientific papers on the topic [e.g., see
WMO (2018) and references therein], which is not acknowledged
by L2022.

L2022’s research paper is a severely flawed one. There is no
tropical ozone hole, and the CRE mechanism does not explain
observed changes in stratospheric ozone either in the polar regions
or in the tropics.
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