8 research outputs found

    Androgen receptor polyQ alleles and COVID-19 severity in men: a replication study

    Full text link
    Background: Ample evidence indicates a sex-related difference in severity of COVID19, with less favorable outcomes observed in men. Genetic factors have been proposed as candidates to explain this difference. The polyglutamine (polyQ) polymorphism in the androgen receptor gene has been recently described as a genetic biomarker of COVID-19 severity. Objective: To test the association between the androgen receptor polyQ polymorphism and COVID-19 severity in a large cohort of COVID-19 male patients. Materials and methods: This study included 1136 male patients infected with SARSCoV-2 as confirmed by positive PCR. Patients were retrospectively and prospectively enrolled from March to November 2020. Patients were classified according to their severity into three categories: oligosymptomatic, hospitalized and severe patients requiring ventilatory support. The number of CAG repeats (polyQ polymorphism) at the androgen receptor was obtained by PCR and patients were classified as either short (<23 repeats) or long (≥23 repeats) allele carriers. The association between polyQ alleles (short or long) and COVID-19 severity was assessed by Chi-squared (Chi2) and logistic regression analysis. Results: The mean number of polyQ CAG repeats was 22 (±3). Patients were classified as oligosymptomatic (15.5%), hospitalized (63.2%), and severe patients (21.3%) requiring substantial respiratory support. PolyQ alleles distribution did not show significant differences between severity classes in our cohort (Chi2 test p > 0.05). Similar results were observed after adjusting by known risk factors such as age, comorbidities, and ethnicity (multivariate logistic regression analysis)Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation (COVID-19 Research Call; COV20/00181) co-financed by European Development Regional Fund (FEDER, A way to achieve Europe); Estrella de Levante (E G-N); Colabora Mujer (E G-N); Instituto de Salud Carlos III (Centro de Investigación en Red de Enfermedades Raras, CIBERer); IIS-Fundación Jiménez Díaz-UAM Chair in Genomic Medicine; Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation (Miguel Servet Contract Number: CP17/00006 and Juan Rodes Contract Number: JR17/00020) co-financied by European Regional Development Fund (FEDER); CEGEN-PRB3-ISCIII is funded by ISCIII and ERDF, Grant Number: PT17/001

    High SARS-CoV-2 viral load is associated with a worse clinical outcome of COVID-19 disease

    Get PDF
    COVID-19 severity and progression are determined by several host and virological factors that may influence the final outcome of SARS-CoV-2-infected patients. The objective of this work was to determine a possible association between viral load, obtained from nasopharyngeal swabs, and the severity of the infection in a cohort of 448 SARS-CoV-2-infected patients from a hospital in Madrid during the first outbreak of the pandemic in Spain. To perform this, we clinically classified patients as mild, moderate and severe COVID-19 according to a number of clinical parameters such as hospitalization requirement, need of oxygen therapy, admission to intensive care units and/or death. Also, Ct values were determined using SARS-CoV-2-specific oligonucleotides directed to ORF1ab. Here we report a statistically significant association between viral load and disease severity, a high viral load being associated with worse clinical prognosis, independently of several previously identified risk factors such as age, sex, hypertension, cardiovascular disease, diabetes, obesity and lung disease (asthma and chronic obstructive pulmonary disease). The data presented here reinforce viral load as a potential biomarker for predicting disease severity in SARS-CoV-2-infected patients. It is also an important parameter in viral evolution since it relates to the numbers and types of variant genomes present in a viral population, a potential determinant of disease progression.This work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181), and co‐financed by European Development Regional Fund ‘A way to achieve Europe’. The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Científicas (CSIC), BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MCIU), PI18/00210 and PI21/00139 from Instituto de Salud Carlos III. C.P., M.C. and P.M. are supported by the Miguel Servet programme of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006 and CP16/00116, respectively) cofinanced by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R.L.-V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. R.l-R is sponsored by the IIS-Fundación Jiménez Díaz-UAM Genomic Medicine Chair.Peer reviewe

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Análisis molecular del efecto de biocidas sobre la formación y el desarrollo del biofouling

    Get PDF
    Sesión III: Bioteconología. Comunicación oral presentada al congreso nacional citado. Tuvo lugar del 16-18, septiembre, 2008, en Puerto Real, Cádiz, España.En los sistemas industriales que utilizan fluidos como refrigerantes, los circuitos del intercambiador de calor deben trabajar en las condiciones óptimas para que la eficiencia en la transferencia de calor sea la máxima posible. Este tipo de sistemas, especialmente aquellos abiertos que utilizan agua como fluido refrigerante, presentan un problema de reducción en la eficacia del proceso como consecuencia de la formación de depósitos de origen biológico.Peer reviewe

    High SARS-CoV-2 viral load is associated with a worse clinical outcome of COVID-19 disease

    Get PDF
    COVID-19 severity and progression are determined by several host and virological factors that may influence the final outcome of SARS-CoV-2-infected patients. The objective of this work is to determine a possible association between the viral load, obtained from nasopharyngeal swabs, and the severity of the infection in a cohort of 448 SARS-CoV-2-infected patients from a hospital in Madrid during the first outbreak of the pandemic in Spain. To perform this, we have clinically classified patients as mild, moderate and severe COVID-19 according to a number of clinical parameters such as hospitalization requirement, need of oxygen therapy, admission to intensive care units and/or exitus. Here we report a statistically significant correlation between viral load and disease severity, being high viral load associated with worse clinical prognosis, independently of several previously identified risk factors such as age, sex, hypertension, cardiovascular disease, diabetes, obesity, and lung disease (asthma and chronic obstructive pulmonary disease). The data presented here reinforce the viral load as a potential biomarker for predicting disease severity in SARS-CoV-2-infected patients. It is also an important parameter in viral evolution since it relates to the numbers and types of variant genomes present in a viral population, a potential determinant of disease progression.This work was supported by Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181) co-financed by European Development Regional Fund (A way to achieve Europe). The work was also supported by grants CSIC-COV19-014 from Consejo Superior de Investigaciones Cientificas (CSIC), BFU2017-91384-EXP from Ministerio de Ciencia, Innovacion y Universidades (MICIU), PI18/00210 from Instituto de Salud Carlos III. C.P., M.C. and P.M. are supported by the Miguel Servet program of the Instituto de Salud Carlos III (CPII19/00001, CPII17/00006 and CP16/00116, respectively) cofinanced by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investigacion en Red de Enfermedades Hepaticas y Digestivas) is funded by Instituto de Salud Carlos III. Institutional grants from the Fundacion Ramon Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). B. M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo) cofinanced by Fondo Social Europeo (FSE). R. L.-V. is supported by predoctoral contract PEJD-2019-PRE/BMD-16414 from Comunidad de Madrid. R L-R is sponsored by the IIS-Fundacion Jimenez Diaz-UAM Genomic Medicine Chair.N

    IL-6–based mortality prediction model for COVID-19: Validation and update in multicenter and second wave cohorts.

    No full text
    Background: Coronavirus disease 2019 (COVID-19) is a highly variable condition. Validated tools to assist in the early detection of patients at high risk of mortality can help guide medical decisions. Objective: We sought to validate externally, as well as in patients from the second pandemic wave in Europe, our previously developed mortality prediction model for hospitalized COVID-19 patients. Methods: Three validation cohorts were generated: 2 external with 185 and 730 patients from the first wave and 1 internal with 119 patients from the second wave. The probability of death was calculated for all subjects using our prediction model, which includes peripheral blood oxygen saturation/fraction of inspired oxygen ratio, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, IL-6, and age. Discrimination and calibration were evaluated in the validation cohorts. The prediction model was updated by reestimating individual risk factor effects in the overall cohort (N 5 1477). Results: The mortality prediction model showed good performance in the external validation cohorts 1 and 2, and in the second wave validation cohort 3 (area under the receiveroperating characteristic curve, 0.94, 0.86, and 0.86, respectively), with excellent calibration (calibration slope, 0.86, 0.94, and 0.79; intercept, 0.05, 0.03, and 0.10, respectively). The updated model accurately predicted mortality in the overall cohort (area under the receiver-operating characteristic curve, 0.91), which included patients from both the first and second COVID-19 waves. The updated model was also useful to predict fatal outcome in patients without respiratory distress at the time of evaluation. Conclusions: This is the first COVID-19 mortality prediction model validated in patients from the first and second pandemic waves. The COR112 online calculator is freely available to facilitate its implementationpre-print3076 K

    Novel genes and sex differences in COVID-19 severity.

    Get PDF
    Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10-22 and p = 8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10-8) and ARHGAP33 (p = 1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided
    corecore