18 research outputs found

    Controlled Morphology and Its Effects on the Thermoelectric Properties of SnSe2 Thin Films

    Get PDF
    In the last few years, the thermoelectric properties of tin selenide (SnSe) have been explored in much detail due to its high efficiency and green nature, being free of Te and Pb. In the same chalcogenide family, SnSe2 is also a layered structured material, but its thermoelectric potential has not been widely explored experimentally. Since SnSe2 has the layered structure, its electrical transport properties may strongly be affected by its microstructure and morphology. Here, we report the effect of reaction time on the structure, phase, and morphology of the SnSe2 during solvothermal synthesis process. We have studied four SnSe2 samples with different reaction times. The sample obtained after 16 h of reaction time was named as M1, for 20 h M2, similarly for 24 h was M3 and for 48 hours’ time, the sample was named as M4. We investigated its thermoelectric properties and found that phase purity and morphology can affect the thermoelectric performance of the synthesized samples. The peak power factor (PF) value along the ab plane was (0.69 μWcm−1K−2) for the M4 sample at 575 K, which was the highest among all the measured samples. The comparatively larger PF value of sample M4 can be related to the increase in its electrical conductivity due to increase in phase purity and band gap reduction

    Outcome of volar Barton fractures of distal radius managed with open reduction and internal fixation with volar locking plate

    Get PDF
    Background: Volar Barton fractures of distal radius almost always require a surgical fixation. Near anatomical reduction and a stout fixation is imperative for good outcome. The present study aimed at studying the outcome of open reduction and internal fixation with volar locking plate for volar Barton fractures. Methods: The present study included 25 patients with volar Barton fractures of distal radius presenting to the orthopaedic department who were managed with volar locking plate. The minimum follow-up period was 12 months. Wrist movements were recorded and outcome was studied using modified mayo wrist score at final follow-up.   Results: The mean modified mayo wrist score at final follow-up was 88.47±15.3. Excellent to good outcome was observed in 80% of the patients. None of the patients had a poor outcome. Clinically significant movements were observed at wrist at final follow-up. Superficial wound infection was the most common complication and deep infection was seen in two patients and both of them needed early implant removal at three months. Hypertrophic scar at surgical incision site was observed in two patients but did not bother the patients. Two patients needed a stellate ganglion block and physiotherapy for complex regional pain syndrome (CRPS) and both responded well. Conclusions: Open reduction and internal fixation (ORIF) with volar locking plate provides stout fixation in volar Barton fractures and allows early physiotherapy and rehabilitation of wrist. The results are predictably good in most patients with minimal complications rates.

    A review on fundamentals for designing hydrogen evolution electrocatalyst

    Get PDF
    As a clean, efficient, and renewable energy source, hydrogen has always been recognized as a favourable replacement of fossil fuel. A primary challenge is an efficient generation of hydrogen to fulfil the requirements of hydrogen on a commercial scale. The electrocatalytic process of HER (hydrogen evolution reaction), as primary phase in water electrolytic process for H2 production, has undergone comprehensive observation from recent decades. Electrolytic water splitting presents a promised route to attain efficient hydrogen generation concerning energy conversion and storage, with electrolysis or catalysis playing a pivotal role. The advancement of catalyst or electrocatalysts that are effective, enduring and economical is necessary prerequisite for realizing the intended electrolytic hydrogen generation from water splitting for applicable considerations, embodying the primary emphasis of this article. In this extensive review, we initially summarize the basics of the Hydrogen evolution reaction and examine the latest cutting-edge progress in economical and highly efficiency catalysts utilizing both non-noble and noble metals. Moreover, the recent breakthroughs over the preceding years in electrolytic HER employing more affordable and widely available nanoparticles with a specific center of attention on economical and non-platinum electrocatalysts rooted in metal free (MF) and transition metal composite catalysts are deliberated here

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The Corporate Social Responsibility and Its Impact on Financial Performance: A Case of Developing Countries

    No full text
    In developing nations, environmental policies have not given nearly enough consideration to the role that environmentally friendly innovation plays. Green innovation and long-term financial performance are extremely dependent on one another. Despite the fact that numerous studies have investigated the impact that a variety of corporate social responsibility (CSR) activities have had on environmental sustainability, relatively few have investigated the implications of green innovation strategies and sustainability. From the mid-2021 through to mid-2022, information was gathered from 184 businesses listed on the Pakistan Stock Exchange (PSX) across 12 different industries. Estimates of the results were obtained by the use of structural equation modeling using partial least squares (PLS-SEM). The outcomes of the study indicated that all parts of CSR were positively significant in the process of fostering environmentally sustainable growth, with the exception of one aspect of CSR that was directed toward customers. Additionally, sustainable development contributes to the mediation impact that green innovation has, making this effect even more powerful. The data show that CSR activities have an exceptional impact on financial performance (FP) in all aspects other than one, and that green innovation (GI) also has a high-quality impact on FP, which demonstrates the significance of CSR practices in enhancing sustainable environment

    Investigation of the Effects of the Incident Flow Angle on Vibration Behavior in Heat Exchanger Tube Bundle

    No full text
    Experimental study of incident flow angle effects on vibration behavior has been carried out on aluminum tube in parallel triangular tube bundle with P/D ratio of 1.375. Fluid elastic instability is the most fatal mechanism from all of the vibration mechanisms and therefore must be dealt with a lot of attention. Experiments were performed on low speed water tunnel with the velocity of water ranges from 0.3 m/s to 0.7 m/s. The experiments were designed in a unique way to study the effects of incident flow angle on vibration behavior. The monitored tube was mounted flexibly in an array of rigid tubes. Experiments were conducted on a flexible tube for different velocities ranging from 0.3 m/s to 0.7 m/s with different array rotated angles (0 to 90 degrees). It was observed that the vibration level was significantly high at 75 degree configuration as compared to other rotated angle configurations. Also it was observed that the damping response is dispersed with all positive values, indicating that there is no instability in the tube

    Performance Evaluation of Sustainable Soil Stabilization Process Using Waste Materials

    No full text
    The process of soil stabilization is a fundamental requirement before road infrastructure development is possible. Different binding materials have been used worldwide as soil stabilizers. In this study, water treatment waste (i.e., alum sludge (AS)) was used as a soil stabilizer. Alum sludge can work not only as a low-cost soil stabilizer but also can solve the problem of waste management at a large scale. Utilization of alum waste can be a sustainable solution and environmentally friendly exercise. Thus, in consideration of the pozzolanic properties of alum, it was applied as a binder, similar to cement or lime, to stabilize the soil with the addition of 2%, 4%, 6%, 8%, and 10% of dry soil by weight. To analyze the resulting improvement in soil strength, the California Bearing Ratio (CBR) test was conducted in addition to three other tests (i.e., particle size analysis, Atterberg’s limits test, and modified proctor test). The soil bearing ratio was significantly improved from 6.53% to 16.86% at the optimum level of an 8% addition of alum sludge. Furthermore, the artificial neural networks (ANNs) technique was applied to study the correlations between the CBR and the physical properties of soil, which showed that, at 8% optimum alum sludge, maximum dry density, optimum moisture content, and plasticity index were also at maximum levels. This study will help in providing an eco-friendly soil stabilization process as well as a waste management solution

    Unraveling Degradation Processes and Strategies for Enhancing Reliability in Organic Light-Emitting Diodes

    No full text
    Organic light-emitting diodes (OLEDs) have emerged as a promising technology for various applications owing to their advantages, including low-cost fabrication, flexibility, and compatibility. However, a limited lifetime hinders the practical application of OLEDs in electronic devices. OLEDs are prone to degradation effects during operation, resulting in a decrease in device lifetime and performance. This review article aims to provide an exciting overview of OLED degradation effects, highlighting the various degradation mechanisms. Subsequently, an in-depth exploration of OLEDs degradation mechanisms and failure modes is presented. Internal and external processes of degradation, as well as the reactions and impacts of some compounds on OLED performance, are then elucidated. To overcome degradation challenges, the review emphasizes the importance of utilizing state-of-the-art analytical techniques and the role of these techniques in enhancing the performance and reliability of OLEDs. Furthermore, the review addresses the critical challenges of lifetime and device stability, which are crucial for the commercialization of OLEDs. This study also explores strategies to improve OLEDs’ lifetime and stability, such as using barrier layers and encapsulation techniques. Overall, this article aims to contribute to the advancement of OLED technology and its successful integration into diverse electronic applications

    Green Production and Interaction of Carboxylated CNTs/Biogenic ZnO Composite for Antibacterial Activity

    No full text
    Using biomolecule-rich plant extracts, the conversion of metal ions to metal oxide nanoparticles via abiogenic approach is highly intriguing, environmentally friendly, and quick. The inherent inclination of plant extracts function as capping agents in the insitu synthesis. In this study, biogenic zinc oxide nanoparticles (ZnO−NPs) were synthesized using an aqueous leaf extract from Moringaoleifera. The ZnO−NPs were then mixed with carboxylated carbon nanotubes (CNTs) to create a carboxylated CNTs/biogenic ZnO composite using asol–gel method. The CNTs/ZnO composite displayed 18 mm, 16 mm, and 17 mm zones of inhibition (ZOI) against Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli, respectively. In contrast with ZnO−NPs, the produced carboxylated CNTs/ZnO composite demonstrated a 13 percent elevation in ZOI as antibacterial activity against Bacillus cereus ATCC 19659, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. The characterization of ZnO−NPs and the carboxylated CNTs/ZnO composite were performed via FTIR, UV/Vis spectroscopy, SEM, and XRD. The XRD pattern depicted a nano−sized crystalline structure (Wurtzite) of ZnO−NPs and a carboxylated CNTs/ZnO composite. The current work comprehends a valuable green technique for killing pathogenic bacteria, and gives fresh insights into the manufacture of metal oxide composites for future research
    corecore