240 research outputs found

    Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta

    Get PDF
    The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes

    EURADOS education and training activities

    Get PDF
    This paper provides a summary of the Education and Training (E&amp ; T) activities that have been developed and organized by the European Radiation Dosimetry Group (EURADOS) in recent years and in the case of Training Courses over the last decade. These E&amp ; T actions include short duration Training Courses on well-established topics organized within the activity of EURADOS Working Groups (WGs), or one-day events integrated in the EURADOS Annual Meeting (workshops, winter schools, the intercomparison participants' sessions and the learning network, among others). Moreover, EURADOS has recently established a Young Scientist Grant and a Young Scientist Award. The Grant supports young scientists by encouraging them to perform research projects at other laboratories of the EURADOS network. The Award is given in recognition of excellent work developed within the WGs' work programme. Additionally, EURADOS supports the dissemination of knowledge in radiation dosimetry by promoting and endorsing conferences such as the individual monitoring (IM) series, the neutron and ion dosimetry symposia (NEUDOS) and contributions to E&amp ; T sessions at specific events

    A Theory for the High-T_c Cuprates: Anomalous Normal-State and Spectroscopic Properties, Phase Diagram, and Pairing

    Full text link
    A theory of highly correlated layered superconducting materials isapplied for the cuprates. Differently from an independent-electron approximation, their low-energy excitations are approached in terms of auxiliary particles representing combinations of atomic-like electron configurations, where the introduction of a Lagrange Bose field enables treating them as bosons or fermions. The energy spectrum of this field accounts for the tendency of hole-doped cuprates to form stripe-like inhomogeneities. Consequently, it induces a different analytical behavior for auxiliary particles corresponding to "antinodal" and "nodal" electrons, enabling the existence of different pairing temperatures at T^* and T_c. This theory correctly describes the observed phase diagram of the cuprates, including the non-Fermi-liquid to FL crossover in the normal state, the existence of Fermi arcs below T^* and of a "marginal-FL" critical behavior above it. The qualitative anomalous behavior of numerous physical quantities is accounted for, including kink- and waterfall-like spectral features, the drop in the scattering rates below T^* and more radically below T_c, and an effective increase in the density of carriers with T and \omega, reflected in transport, optical and other properties. Also is explained the correspondence between T_c, the resonance-mode energy, and the "nodal gap".Comment: 28 pages, 7 figure

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Search for the doubly heavy baryon Ξbc+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi} \it{\Xi}_{c}^{+}

    Get PDF
    A first search for the Ξbc+J/ψΞc+\it{\Xi}_{bc}^{+}\to J/\it{\psi}\it{\Xi}_{c}^{+} decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9fb19\,\mathrm{fb}^{-1} recorded at centre-of-mass energies of 7, 8, and 13TeV13\mathrm{\,Te\kern -0.1em V}. Two peaking structures are seen with a local (global) significance of 4.3(2.8)4.3\,(2.8) and 4.1(2.4)4.1\,(2.4) standard deviations at masses of 6571MeV ⁣/c26571\,\mathrm{Me\kern -0.1em V\!/}c^2 and 6694MeV ⁣/c26694\,\mathrm{Me\kern -0.1em V\!/}c^2, respectively. Upper limits are set on the Ξbc+\it{\Xi}_{bc}^{+} baryon production cross-section times the branching fraction relative to that of the Bc+J/ψDs+B_{c}^{+}\to J/\it{\psi} D_{s}^{+} decay at centre-of-mass energies of 8 and 13TeV13\mathrm{\,Te\kern -0.1em V}, in the Ξbc+\it{\Xi}_{bc}^{+} and in the Bc+B_{c}^{+} rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV ⁣/c20\,\mathrm{Ge\kern -0.1em V\!/}c, respectively. Upper limits are presented as a function of the Ξbc+\it{\Xi}_{bc}^{+} mass and lifetime.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-005.html (LHCb public pages

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore