251 research outputs found

    Post hoc analysis of the SONAR trial indicates that the endothelin receptor antagonist atrasentan is associated with less pain in patients with type 2 diabetes and chronic kidney disease

    Get PDF
    Pain is prevalent among patients with diabetes and chronic kidney disease (CKD). The management of chronic pain in these patients is limited by nephrotoxicity of commonly used drugs including non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. Since previous studies implicated endothelin-1 in pain nociception, our post hoc analysis of the SONAR trial assessed the association between the endothelin receptor antagonist atrasentan and pain and prescription of analgesics. SONAR was a randomized, double-blind, placebo-controlled clinical trial that recruited participants with type 2 diabetes and CKD (estimated glomerular filtration rate 25–75 ml/min/1.73 m2; urinary albumin-to-creatinine ratio 300–5000 mg/g). Participants were randomized to receive atrasentan or placebo (1834 each arm). The main outcome was pain-related adverse events (AEs) reported by investigators. We applied Cox regression to assess the effect of atrasentan compared to placebo on the risk of the first reported pain-related AE and, secondly, first prescription of analgesics. We used the Anderson-Gill method to assess effects on all (first and subsequent) pain-related AEs. During 2.2-year median follow-up, 1183 pain-related AEs occurred. Rates for the first pain-related event were 138.2 and 170.2 per 1000 person-years in the atrasentan and placebo group respectively (hazard ratio 0.82 [95% confidence interval 0.72–0.93]). Atrasentan also reduced the rate of all (first and subsequent) pain-related AEs (rate ratio 0.80 [0.70-0.91]). These findings were similar after accounting for competing risk of death (sub-hazard ratio 0.81 [0.71–0.92]). Patients treated with atrasentan initiated fewer analgesics including NSAIDs and opioids compared to placebo during follow-up (hazard ratio = 0.72 [0.60–0.88]). Thus, atrasentan was associated with reduced pain-related events and pain-related use of analgesics in carefully selected patients with type 2 diabetes and CKD

    Post hoc analysis of the SONAR trial indicates that the endothelin receptor antagonist atrasentan is associated with less pain in patients with type 2 diabetes and chronic kidney disease

    Get PDF
    Pain is prevalent among patients with diabetes and chronic kidney disease (CKD). The management of chronic pain in these patients is limited by nephrotoxicity of commonly used drugs including non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. Since previous studies implicated endothelin-1 in pain nociception, our post hoc analysis of the SONAR trial assessed the association between the endothelin receptor antagonist atrasentan and pain and prescription of analgesics. SONAR was a randomized, double-blind, placebo-controlled clinical trial that recruited participants with type 2 diabetes and CKD (estimated glomerular filtration rate 25–75 ml/min/1.73 m2; urinary albumin-to-creatinine ratio 300–5000 mg/g). Participants were randomized to receive atrasentan or placebo (1834 each arm). The main outcome was pain-related adverse events (AEs) reported by investigators. We applied Cox regression to assess the effect of atrasentan compared to placebo on the risk of the first reported pain-related AE and, secondly, first prescription of analgesics. We used the Anderson-Gill method to assess effects on all (first and subsequent) pain-related AEs. During 2.2-year median follow-up, 1183 pain-related AEs occurred. Rates for the first pain-related event were 138.2 and 170.2 per 1000 person-years in the atrasentan and placebo group respectively (hazard ratio 0.82 [95% confidence interval 0.72–0.93]). Atrasentan also reduced the rate of all (first and subsequent) pain-related AEs (rate ratio 0.80 [0.70-0.91]). These findings were similar after accounting for competing risk of death (sub-hazard ratio 0.81 [0.71–0.92]). Patients treated with atrasentan initiated fewer analgesics including NSAIDs and opioids compared to placebo during follow-up (hazard ratio = 0.72 [0.60–0.88]). Thus, atrasentan was associated with reduced pain-related events and pain-related use of analgesics in carefully selected patients with type 2 diabetes and CKD

    Protective effects and potential mechanisms of Pien Tze Huang on cerebral chronic ischemia and hypertensive stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke caused by brain ischemia is the third leading cause of adult disability. Active prevention and early treatment of stroke targeting the causes and risk factors may decrease its incidence, mortality and subsequent disability. Pien Tze Huang (PZH), a Chinese medicine formula, was found to have anti-edema, anti-inflammatory and anti-thrombotic effects that can prevent brain damage. This study aims to investigate the potential mechanisms of the preventive effects of Pien Tze Huang on brain damage caused by chronic ischemia and hypertensive stroke in rats.</p> <p>Methods</p> <p>The effects of Pien Tze Huang on brain protein expression in spontaneously hypertensive rat (SHR) and stroke prone SHR (SHRsp) were studied with 2-D gel electrophoresis and mass spectrometric analysis with a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)/TOF tandem mass spectrometer and on brain cell death with enzyme link immunosorbent assay (ELISA) and immunostaining.</p> <p>Results</p> <p>Pien Tze Huang decreased cell death in hippocampus and cerebellum caused by chronic ischemia and hypertensive stroke. Immunostaining of caspase-3 results indicated that Pien Tze Huang prevents brain cells from apoptosis caused by ischemia. Brain protein expression results suggested that Pien Tze Huang downregulated QCR<sub>2 </sub>in the electron transfer chain of mitochondria preventing reactive oxygen species (ROS) damage and possibly subsequent cell death (caspase 3 assay) as caused by chronic ischemia or hypertensive stroke to hippocampus and cerebellum.</p> <p>Conclusion</p> <p>Pien Tze Huang showed preventive effects on limiting the damage or injury caused by chronic ischemia and hypertensive stroke in rats. The effect of Pien Tze Huang was possibly related to prevention of cell death from apoptosis or ROS/oxidative damage in mitochondria.</p

    Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits

    Get PDF
    Genome-wide gene expression studies may provide substantial insight into gene activities and biological pathways differing between tissues and individuals. We investigated such gene expression variation by analyzing expression profiles in brain tissues derived from eight different brain regions and from blood in 12 monkeys from a biomedically important non-human primate model, the vervet (Chlorocebus aethiops sabaeus). We characterized brain regional differences in gene expression, focusing on transcripts for which inter-individual variation of expression in brain correlates well with variation in blood from the same individuals. Using stringent criteria, we identified 29 transcripts whose expression is measurable, stable, replicable, variable between individuals, relevant to brain function and heritable. Polymorphisms identified in probe regions could, in a minority of transcripts, confound the interpretation of the observed inter-individual variation. The high heritability of levels of these transcripts in a large vervet pedigree validated our approach of focusing on transcripts that showed higher inter-individual compared with intra-individual variation. These selected transcripts are candidate expression Quantitative Trait Loci, differentially regulating transcript levels in the brain among individuals. Given the high degree of conservation of tissue expression profiles between vervets and humans, our findings may facilitate the understanding of regional and individual transcriptional variation and its genetic mechanisms in humans. The approach employed here—utilizing higher quality tissue and more precise dissection of brain regions than is usually possible in humans—may therefore provide a powerful means to investigate variation in gene expression relevant to complex brain related traits, including human neuropsychiatric diseases

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Preclinical Models for Neuroblastoma: Establishing a Baseline for Treatment

    Get PDF
    Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system.Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a "standard of care" chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents.The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer

    Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

    Get PDF
    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility
    corecore