20 research outputs found

    Laboratory Studies on the Rheotaxis of Fish under Different Attraction Flow Conditions

    No full text
    The damming of the river changes the structure of the original river ecosystem, and although fish passage plays an important role in maintaining the connectivity of the river ecosystem, the fish have difficulty finding the fish passage entrance during the upstream process. This paper studied the rheotaxis of fish under three different water flow conditions experimentally through recirculating water tanks. To better understand the response of Crucian carp (Carassius auratus) to water flow stimulation, the representative swimming trajectory, sensing success rate, attraction success rate, reaction time, and attraction time of the fish were analyzed by using a video monitoring system. The experimental results showed that fish responded differently to single-peak and lateral bimodal outflow conditions: (1) the single-peak outflow condition had a much better attraction effect than the lateral bimodal outflow condition, both in terms of sensing success rate and attraction success rate; (2) the fish swam mainly in the middle area of the lateral bimodal outflow condition, while the fish swam more evenly in the single-peak outflow condition. Therefore, setting the attraction current at the right time and near the entrance of the fish passage may help to improve the effect of fish attraction

    Reconciling Dimensional and Categorical Models of Autism Heterogeneity: A Brain Connectomics and Behavioral Study

    No full text
    Contains fulltext : 220258.pdf (Publisher’s version ) (Open Access

    Candidate Serological Biomarkers for Cancer Identified from the Secretomes of 23 Cancer Cell Lines and the Human Protein Atlas*

    No full text
    Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6–137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers
    corecore