1,394 research outputs found

    Spin texture and magnetoroton excitations at nu=1/3

    Get PDF
    Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020 +/- 0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3

    Identification of Cellular Targets of MicroRNA-181a in HepG2 Cells: A New Approach for Functional Analysis of MicroRNAs

    Get PDF
    <div><p>MicroRNAs (miRNAs) are known to play a part in regulating important cellular processes. They generally perform their regulatory function through their binding with mRNAs, ultimately leading to a repression of target protein expression levels. However, their roles in cellular processes are poorly understood due to the limited understanding of their specific cellular targets. Aberrant levels of miRNAs have been found in hepatocellular carcinoma (HCC) including miR-181a. Using bioinformatics analysis, cyclin-dependent kinase inhibitor 1B (CDKN1β) and transcriptional factor E2F7 were identified as potential targets of miR-181a. Validation analysis using surface plasmon resonance (SPR) showed a positive binding between miR-181a and the 3’UTRs of these two potential mRNA targets. <i>In vivo</i> luciferase assay further confirmed the positive miR-181a:mRNA bindings, where a significant decrease in luciferase activity was detected when HepG2 cells were co-transfected with the 3’UTR-containing reporter plasmids and miR-181a. The potential impact of miR-181a binding to its specific targets on the general cellular behavior was further investigated. Results showed that miR-181a significantly activated the MAPK/JNK pathway which regulates cell proliferation, supporting our recently reported findings. Inhibition of miR-181a, on the other hand, abolished the observed activation. Our findings open up a new approach in designing targeted functional analysis of miRNAs in cellular processes, through the identification of their cellular targets.</p></div

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    A UK wide cohort study describing management and outcomes for infants with surgical Necrotising Enterocolitis

    Get PDF
    The Royal College of Surgeons have proposed using outcomes from necrotising enterocolitis (NEC) surgery for revalidation of neonatal surgeons. The aim of this study was therefore to calculate the number of infants in the UK/Ireland with surgical NEC and describe outcomes that could be used for national benchmarking and counselling of parents. A prospective nationwide cohort study of every infant requiring surgical intervention for NEC in the UK was conducted between 01/03/13 and 28/02/14. Primary outcome was mortality at 28-days. Secondary outcomes included discharge, post-operative complication, and TPN requirement. 236 infants were included, 43(18%) of whom died, and eight(3%) of whom were discharged prior to 28-days post decision to intervene surgically. Sixty infants who underwent laparotomy (27%) experienced a complication, and 67(35%) of those who were alive at 28 days were parenteral nutrition free. Following multi-variable modelling, presence of a non-cardiac congenital anomaly (aOR 5.17, 95% CI 1.9-14.1), abdominal wall erythema or discolouration at presentation (aOR 2.51, 95% CI 1.23-5.1), diagnosis of single intestinal perforation at laparotomy (aOR 3.1 95% CI 1.05-9.3), and necessity to perform a clip and drop procedure (aOR 30, 95% CI 3.9-237) were associated with increased 28-day mortality. These results can be used for national benchmarking and counselling of parents

    A dopaminergic switch for fear to safety transitions

    Get PDF
    Overcoming aversive emotional memories requires neural systems that detect when fear responses are no longer appropriate. The midbrain ventral tegmental area (VTA) dopamine system has been implicated in reward and more broadly in signalling when a better than expected outcome has occurred. This suggests that it may be important in guiding fear to safety transitions. We report that when an expected aversive outcome does not occur, activity in midbrain dopamine neurons is necessary to extinguish behavioral fear responses and engage molecular signalling events in extinction learning circuits. Furthermore, a specific dopamine projection to the nucleus accumbens medial shell is partially responsible for this effect. By contrast, a separate dopamine projection to the medial prefrontal cortex opposes extinction learning. This demonstrates a novel function for the canonical VTA-dopamine reward system and reveals opposing behavioural roles for different dopamine neuron projections in fear extinction learning

    Stain Consistency Learning: Handling Stain Variation for Automatic Digital Pathology Segmentation

    Full text link
    Stain variation is a unique challenge associated with automated analysis of digital pathology. Numerous methods have been developed to improve the robustness of machine learning methods to stain variation, but comparative studies have demonstrated limited benefits to performance. Moreover, methods to handle stain variation were largely developed for H&E stained data, with evaluation generally limited to classification tasks. Here we propose Stain Consistency Learning, a novel framework combining stain-specific augmentation with a stain consistency loss function to learn stain colour invariant features. We perform the first, extensive comparison of methods to handle stain variation for segmentation tasks, comparing ten methods on Masson's trichrome and H&E stained cell and nuclei datasets, respectively. We observed that stain normalisation methods resulted in equivalent or worse performance, while stain augmentation or stain adversarial methods demonstrated improved performance, with the best performance consistently achieved by our proposed approach. The code is available at: https://github.com/mlyg/stain_consistency_learnin

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    A retrospective and agenda for future research on Chinese outward foreign direct investment

    Get PDF
    Our original paper “The determinants of Chinese Outward Foreign Direct Investment” was the first theoretically based empirical analysis of the phenomenon. It utilised internalisation theory to show that Chinese state-owned firms reacted to home country market imperfections to surmount barriers to foreign entry arising from naivety and the lack of obvious ownership advantages, leveraging institutional factors including favourable policy stimuli. This special theory explained outward foreign direct investment (OFDI) but provided surprises. These included the apparent appetite for risk evinced by these early investors, causing us to conjecture that domestic market imperfections, particularly in the domestic capital market, might be responsible. The article stimulated a massive subsequent, largely successful, research effort on emerging country multinationals. In this Retrospective article we review some of the main strands of research that ensued, for the insight they offer for the theme of our commentary. Our theme is that theoretical development can only come through embracing yet more challenging, different, and new contexts, and we make suggestions for future research directions
    corecore