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ABSTRACT 

Umbilical cord blood (UCB) mononuclear cells (UCBMNC) transplants improve recovery in 

animal spinal cord injury (SCI) models.  We transplanted UCBMNC into 28 people with 

chronic complete SCI in Hong Kong (HK) and Kunming (KM).  Stemcyte Inc. donated 

UCBMNC isolated from human leukocyte antigen (HLA≥4:6) matched UCB units.  In HK, four 

participants received four 4-µL (1.6 million cells) injections into dorsal entry zones above 

and below the injury site and another four received 8-µL (3.2 million cells) injections. The 8 

participants averaged 13 years after C5-T10 SCI.  Magnetic resonance diffusion tensor 

imaging of 5 participants showed white matter gaps at the injury site before treatment.  Two 

participants had fiber bundles growing across the injury site by 12 months and the rest had 

narrower white matter gaps.  Motor, walking index of SCI (WISCI) and spinal cord 

independence measure (SCIM) scores did not change.  In KM, five groups of four participants 

received four 4-µL (1.6 million cells), 8-µL (3.2 million cells), 16-µL (6.4 million cells), 6.4 

million cells plus 30mg/kg methylprednisolone (MP), or 6.4 million cells plus MP and a 6-

week course of oral lithium carbonate (750 mg/day).  KM participants averaged 7 years 

after C3-T11 SCI and received 3-6 months of intensive locomotor training.  Before surgery, 

only 2 participants walked 10 meters with assistance and did not need assistance for bladder 

or bowel care before surgery.  The rest could not walk or do their bladder and bowel care 

without assistance.  At a year (41-87 weeks), WISCI and SCIM scores improved, i.e. 15/20 

participants walked 10 meters (p=0.001); 12/20 did not need assistance for bladder care 

(p=0.001) or bowel care (p=0.002).  Five participants converted from complete to 

incomplete (2 sensory, 3 motor; p=0.038) SCI.  We conclude that UCBMNC transplants and 

locomotor training improved WISCI and SCIM. Additional clinical trials are proposed. 

Keywords: umbilical cord blood, spinal cord injury, mononuclear cells, lithium, central 

pattern generator 



Copyright © 2016 Cognizant Communication Corporation 

 

CT-1483 Cell Transplantation early e-pub; provisional acceptance 03/29/2016 3 

INTRODUCTION 

Umbilical cord blood (UCB) mononuclear cell (UCBMNC) transplants improve walking 

recovery in rat 1-18 and dog 19-24 spinal cord injury (SCI) models.  Investigators gave the cells 

by intravenous infusion 1,25,26, intrathecal injection 27,28, or transplantation into the spinal 

cord 3,4,6,15,21.  A few investigators used allogeneic canine 19,23,29 or fetal rat UCB 13, some 

directly infused human UCB intravenously 1,8,15 while others used human UCBMNC enriched 

for CD34+ cells 3,5-7,10,16,21,25,30-35 or CD45+ cells 28, mesenchymal cells cultured from human 

4,11,12,19,22,24,27,36-46 or canine UCB 19,23,29,47, human UCB cells selected for neural 

characteristics 48-53, somatic stem cells 18, human UCBMNC transfected to express growth 

factors 54,55, human UCBMNC combined with olfactory ensheathing glia 56 or lithium chloride 

12.  In addition, many groups studied human umbilical cord tissue-derived mesenchymal cells 

14,19,24,29,36-39,45,46,57-79  

UCBMNC may improve recovery through multiple mechanisms, including secretion of anti-

inflammatory cytokines 9,30-32, release of growth factors 8,10,11,46, upregulation of matrix 

metalloproteinases 31, downregulation of tissue plasminogen activator 32, prevention of 

apoptosis 30, facilitation of myelination 7,22,49, reduced gliosis 24,47, and increased 

angiogenesis 35.  Although several groups have claimed that UCB differentiate into neural 

precursors 80,81 or neural stem cells 82-85, none have provided convincing evidence of 

neuronal or astroglial production by UCB stem cells transplanted into animal spinal cords.   

Lithium stimulates stem cell proliferation 86, neurogenesis 87, and regeneration of long 

spinal tracts.88-90  Systemic lithium treatment increases neurotrophin expression in contused 

rat spinal cords after transplants of neonatal rat mononuclear cells, including nerve growth 

factor (NGF), neutrophin-3 (NT-3), and glial derived neurotrophic factor (GDNF) known to 

stimulate spinal axonal growth. 91   Deng, et al. 12 reported that lithium combined with 

human UCBMNC improves locomotor recovery in rats after SCI.  We therefore proposed to 

do clinical trials to assess safety and effects of lithium, UCBMNC, and UCBMNC plus lithium 

therapy of SCI. 
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Several groups have transplanted UCBMNC and UCB mesenchymal cells into people with SCI.  

In 2005, Kang, et al. 92 reported hip and thigh movement recovery after transplanting human 

leukocyte antigen (HLA) matched UCB “multipotent stem cells” into the spinal cord of a 37-

year old woman with chronic SCI.  In 2010, Ichim, et al. 93 transplanted UCBMNC into the 

spinal cord of a patient with chronic SCI.  In 2011, Cordes, et al. 94 transplanted human 

CD34+ UCB cells into spinal cord of a patient with amyotrophic lateral sclerosis.94  In 2013, 

Yao, et al. 96 reported improved autonomic function and somatosensory evoked potentials 

12 months after intrathecal and intravenous injection of UCBMNC into 25 patients with 

chronic SCI (>6 months).  Several groups have transplanted umbilical cord mesenchymal 

cells 97-100 intrathecally into patients with SCI.   Except for the two case reports, none of the 

trials transplanted UCBMNC directly into the spinal cord.   

We did Phase I and II clinical trials in Hong Kong (HK) and Kunming (KM) to assess the 

safety and efficacy of transplanting escalating doses of HLA-matched (≥4:6) UCBMNC into 

spinal cords of people with chronic (1-19 years after) complete C5-T11 SCI.  The phase I trial 

in HK transplanted 1.6 or 3.2 million UCBMNC into spinal cord above and below the injury 

site.  The patients (average 13 years after injury) did not receive any walking training and 

we did magnetic resonance diffusion tensor imaging (MR-DTI) to visualize long spinal tracts.  

The phase II trial in KM randomized 20 patients with chronic (average 7 years after) 

complete C5-T11 SCI to five treatment groups receiving 1.6, 3.2, or 6.4 million UCBMNC, 6.4 

million UCBMNC with a 30-mg/kg bolus dose of methylprednisolone (MP), or 6.4 million 

UCBMNC with MP and a 6-week course of oral lithium carbonate.  In KM, the patients 

started 3-6 months of intensive locomotor training and were assessed at 6 weeks, 3 months, 

6 months, and one year after surgery for changes of American Spinal Injury Association and 

International Spinal Cord Society (ASIA/ISCOS) impairment scale (AIS) classification, motor 

and sensory scores, the walking index of spinal cord injury (WISCI), the spinal cord 

independence measures (SCIM), modified Ashworth scale (MAS) for spasticity, visual analog 

scale (VAS) for pain, and severe adverse events (SAE).   
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MATERIALS AND METHODS 

Inclusion and exclusion criteria.  The trials included male and female adults (18-60 years 

old) with chronic (≥1 year), neurologically stable (≥6 months), C5-T11 neurological levels, 

and complete (ASIA/ISCOS Impairment Scale or AIS A) SCI.  We excluded people who were in 

another trial within 4 weeks, who had surgical or medical risks, or who were pregnant or 

lactating. 

Treatments.  Participants were assigned sequentially to five treatment groups:  Group A 

received four 4-µL injections of UCBMNC (100,000 cells/µL), Group B received four 8-µL 

injections, Group C received four 16-µL injections, Group D received 16-µL injections plus a 

30mg/kg intravenous bolus of methylprednisolone sodium succinate (MP), and Group E 

received four 16-µL injections plus MP and a 6-week course of oral lithium carbonate (750 

mg/day).  In HK, 8 participants were assigned to only groups A and B (n=4/group).  In KM, 

20 participants were assigned to all 5 groups (n=4/group) and received intensive locomotor 

training for 6 hours/day, 6 days/week, and for 3-6 months. 

The primary outcome measure was ASIA/ISCOS motor and sensory scores 101,102.  

Secondary outcomes include ASIA/ISCOS Impairment Scale (AIS), Walking Index of Spinal 

Cord Injury or WISCI 103, Spinal Cord Independence Measure or SCIM 104, Modified 

Ashworth Scale or MAS for spasticity 105, Visual Analog Score or VAS for pain 106.  We 

categorized adverse events by severity, relevance, significance, and outcomes.  

Adverse Events, Neurological, and SCIM Assessment.  The surgical teams reported 

adverse events, judging severity and relevance of the events.  At 6 weeks, 6 months, and one 

year after surgery in HK, a rehabilitation team consisting of physical therapist and an 

occupational therapist assessed the patients under the supervision of an orthopedic 

surgeon and head of the spinal rehabilitation team.  In KM, a team of doctors and nurses 

evaluated the patients. All examinations were videotaped.  The China Spinal Cord Injury 

Network staff monitored the trials and data collection of both trials. 
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Unit Selection.  Frozen plasma-depleted UCB units were donated by Stemcyte Inc. (Covina, 

CA) and processed for mononuclear cells by Vista Biologics (Carlsbad, CA).  We selected units 

from by matching human leukocyte antigens (HLA≥4:6), initially low-resolution A, B, and DR 

and confirmed by medium (HLA-A and B) to high-resolution (HLA-DR) typing after 

transplantation.  All units fulfilled National Marrow Donor Program (NMDP) standards for 

UCB transplantation.107  Units from donors who may have had hepatitis B (e.g. positive 

maternal antibody) were excluded.   

Cell Preparation. Vista Biologics (Carlsbad, California) prepared the cells for transplantation.  

Each frozen cord blood unit was thawed at 4˚C, washed to reduce dimethylsulfoxide (DMSO) 

concentration from 10% to <1%, treated with human DNAase (Pulmozyme, Genentech), and 

centrifuged in a Ficoll Hypaque (GE Healthcare Life Science, 1.077 specific gravity gradient) 

to isolate the UCBMNC.  The cells were suspended (1 million cells/ml) in animal product-free 

CO2-independent media (Invitrogen, CA) and shipped at 12-28˚C.   We shipped 38 test units 

from Carlsbad to Hong Kong and Kunming.  About 10% of UCBMNC were lost per day of 

shipment.  Shipping at room temperature enriched the UCBMNC for monocytes (35-45%), 

CD34+ or CD133+ cells (3-4%), nucleated red cells (1-2%), and mesenchymal (CD105 ~1%) 

cells.   

Transplantation.  Upon arrival at hospital, the cells were washed in saline, a small aliquot 

was removed to count cells that excluded trypan blue dye, and the remaining cells were 

suspended in normal saline containing 1% human albumin (CSL, Australia) so that each µL 

has ~100,000 trypan-blue excluding mononuclear cells.  The cells were loaded into a 27-

gauge (27G x ¾” or 0.4 x 19 mm, EXEL INT Sterile Scalp Vein Set) needle attached to a 100-

µL Hamilton syringe with flexible tubing.  After laminectomy, durotomy, and removal of 

adhesions between spinal cord and surrounding tissues, the surgeons manually inserted the 

needle 3 mm deep at a 45˚ angle (bevel up) into left and right dorsal root entry zones (DREZ) 

at 5 mm above and 5 mm below the injury site, and slowly (1 µL/minute) injected 4, 8, or 16 

µL of cell suspension into each of the 4 sites.  The dura was sutured to prevent 

cerebrospinal fluid leak.  Postoperative care included analgesia and antibiotics as necessary.     
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Magnetic Resonance Imaging and Diffusion Tensor Imaging.  In HK, we used a 3-Tesla 

magnetic resonance imaging (MRI) scanner (Achieva X-series, Phillips Healthcare, the 

Netherlands) to obtain diffusion tensor images (DTI) of the spinal cord.  Conventional MRIs 

were first obtained (3D T2W and T2W) to locate the injury site.  Fiber tracts were selected 

for tractography by manually identifying regions of interest (ROI) above the injury site for 

descending fibers and below the injury site for ascending fibers.  Using software purchased 

from the manufacturer (Phillips Healthcare), we first quantified the fractional anisotropy of 

the selected ROI, yielding ratios that indicated the degrees to which diffusion of water is 

anisotropic, calculated with eigenvaleus (λ1, λ2, λ3…) of the diffusion tensor.   

Initial scans were obtained from six volunteers without spinal cord injury (six of the 

investigators volunteered).  The FA values of normal spinal cords were quite reproducible, 

ranging from 0.65 to 0.55 from C1 through T12, declining in the more distal segments.  

Standard errors of average FA values were usually ±0.05, suggesting that the measurements 

are reproducible.  In addition, we did MR-DTI scans of seven people with complete spinal 

cord injury (SCI) who did not receive surgery or cell transplantation.  Every one had a gap at 

the injury site.  One person was recruited to be part of the trial but we unfortunately could 

not find a suitable 4:6 HLA match.  The participant agreed to have followup MR-DTI and the 

gap was unchanged 2 years later. 

Clear and distortion free DTI images were obtainable from only 5 of the 8 participants in the 

HK trial.  In three participants, distortion from fixation instruments was too great to allow 

the tractography.  Once a set of MR-DTI parameters were determined for a satisfactory DTI 

in a participant, further scans on the participant were done with the same parameters, so 

that the images could be compared over time.  Three participants agreed to have followup 

scans at 1.5 years after surgery and one participant was rescanned at 2 years.  We 

compared the white matter gap in DTI images obtained before treatment and at one year or 

later in three participants.  Two participants showed evidence of long bundles crossing the 

injury site and growing progressively into proximal and distal spinal cord over time.   
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Locomotor Training.  In HK, the clinical trial participants did not receive locomotor training.  

In KM, at 14 days after surgery, the participants started locomotor training according to the 

Kunming locomotor scale (KLS) described earlier 108.  The participants initially stood with 

help (KLS II), then without help (KLS III), walked in a rolling walker with minimal (KLS IV) 

or no assistance (KLS V), or walked with a 4-point walker (KLS VI) without assistance.  

Participants walked as much as 6 hours a day and 6 days a week for 3-6 months.  They 

typically walked 3 hours in the morning and 3 hours in the afternoon.  The participants left 

hospital at 3 or 6 months, the latter if they were still improving at 3 months. One-year 

followup ranged from 41-87 weeks (41-87w).   

Statistical Analyses.  We used IBM SPSS Statistics (version 22) to do repeated measures 

analysis of variance (ANOVA) to assess ASIA, SCIM and VAS score changes over time (Time) 

and treatments groups (Group), the Kruskal-Wallis test to compare AIS, MAS, WISCI, and 

KLS among treatment groups, and Wilcoxon signed-rank test to compare AIS, MAS, WISCI 

and KLS before and 41-87w after treatment, and Spearman correlation to relate KLS and 

WISCI. Missing data were assumed to equal the last observation, i.e. last observation carried 

forward (LOCF).  To assess WISCI score changes (∆WISCI) and HLA-matching, we used 

ANOVA and Scheffés post hoc test (Statview) and the Chi-Square contingency test (Prism 6, 

GraphPad Software).  We used the Chi-Square test to assess HLA-matching among treatment 

groups.  All ±values indicate standard errors, P-values of <0.05 were considered significant, 

and analyses were based on intention-to-treat. 

Consent, Approvals, and Registrations.  Each participant gave informed consent. 

Institution review boards of the Chinese University of Hong Kong and University of Hong 

Kong approved the trial and the Hong Kong Department of Health approved the trial.  The 

Ethics Committee of Kunming People’s Liberation Army Hospital of Chengdu Military 

Command approved the trial.  Western IRB (Seattle, WA) gave an “approvable” rating for 

both trials. The Military Medical Ministry and Yunnan Department of Science and Technology 

awarded grants for the KM trial.  The two trials were registered on 

https://www.clinicaltrials.gov as NCT01046786 and NCT01354483. 

https://www.clinicaltrials.gov/
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RESULTS 

Participants.  Eight people (1 female, 7 males) participated in HK and 20 people (4 females, 

16 males) participated in KM.  At enrollment, the ages of participants averaged 42.6±2.7 

(range 29-53) in HK and 36.9±2.4 (18-53) years old in KM, respectively 12.8±2.6 (2-20) and 

7.2±1.2 (2-20) years after injury.  All 8 participants in HK were “complete” (AIS A) with C5-

T10 neurological levels and 19/20 participants in KM were AIS A with C5-T11 neurological 

levels and one was sensory incomplete (AIS C) with C3 neurological level.  Figures 1 and 2 

summarize the HK and KM data.  All had significant spinal fractures and most had metallic 

implants to stabilize the spinal fractures.  In HK, all participants had WISCI scores of 0.  In 

KM, 2 participants had WISCI scores of 2 before treatment.  

Treatments. Cord blood units were selected based on low-resolution HLA matching 

(HLA≥4:6) for HLA-A, -B, and –DR and then checked for medium (HLA-A and –B) and high 

resolution (-DRB1) matching after transplantation.  In HK, 2 participants matched 6:6 and 

six matched 5:6 at low resolution but subsequent medium-high resolution matching showed 

one participant matching at 6:6, one at 5:6, and six at 4:6.  In KM, 6 participants matched 6:6, 

ten 5:6, and four 4:6 at low resolution and subsequent medium-high resolution matching 

showed 9 participants matching at 5:6, seven at 4:6, three at 3:6, and one at 1:6.  Low-

resolution HLA matches differed among KM treatment groups (X2=15.67, df=8, p=0.0474) 

but medium-high resolution matches did not (X2=13.17, df=12, p=0.3565). All participants 

received planned doses of cells.  One Group E participant (#18) received placebo instead of 

lithium.  Three KM participants did not complete locomotor training, two due to possible 

tibial fractures (#2, #8) and one due to knee swelling (#20). 

Diffusion Tensor Imaging.  All MR-DTI showed gaps at the injury site (Figure 3).  At 6-18 

months, two participants had progressive fiber growth crossing the gap.  Figure 4 shows 

pre-treatment, 6-month, and 1-year MR-DTI of a participant with T4 SCI.  Figure 5 shows 

MR-DTI’s of an uninjured spinal cord, spinal cords with narrow and wide gaps, fibers 

crossing the gap, and 2 spinal cords with narrower gaps at 12 months after transplantation.  
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Adverse Events.  Nine adverse events occurred in 3 participants in HK.  One participant 

developed neuropathic pain (probably related), hyperthyroidism (probably unrelated), and 

hypertension (probably unrelated).  A second participant developed a thin subdural 

hematoma and pneumocephalus due to cerebrospinal fluid (CSF) loss during surgery.  He 

also developed back sore.  Both resolved spontaneously.  A third participant developed 

subarachnoid hemorrhage (definitely related), neuropathic pain (probably related), and 

colon cancer (not related); the first two resolved spontaneously.  In KM, 68 adverse events 

occurred in 19 participants: 43 were unrelated, 17 definitely, 1 probably, and 7 possibly 

related to treatment.  The most common event was post-operative wound swelling and pain 

in 9 participants.  All adverse events resolved with routine therapies.  No patient had 

neurological loss.  In the 28 participants in the two trials, 5 had serious adverse events (SAE).  

One participant (Group A K1) had slow wound healing and low serum protein; both 

resolved on a high protein diet.  Another  (Group A K2) developed a CSF leak and wound 

dehiscence that required re-operation.  He was later found to have an old tibial fracture and 

stopped locomotor training. A third (Group A H2-2) had blood pressure increase requiring 

hospitalization.  A fourth (Group C, K12) had left leg swelling and thrombosis of vena iliaca 

externa treated by vena cava filter (unrelated).  A fifth participant (Group B H1-3) had colon 

adenocarcinoma discovered at 21 months (probably unrelated).   

Spasticity and Pain.  In HK, the 8 participants had no or mild spasticity before and after 

treatment.  Three had severe neuropathic pain (VAS>50) before treatment that decreased 

(88 to 76, 51 to 28, 67 to 0) after treatment and two developed neuropathic pain after 

treatment (0 to 62, 12 to 24).  In KM, 5 participants had mild spasticity (MAS=1) and 2 had 

moderate spasticity (MAS=2) before treatment; at 41-87w, 7 participants had 1-point 

increases of MAS scores while 2 participants had 1-point decreases, not significant 

(X2=2.977, df=4, p=0.562).  Before treatment, 5 participants had VAS scores of 12-50 out of 

100.  Between w0 and 41-87w, VAS score increased in 3 participants (range: +15 to +69) but 

decreased in 4 participants (range -5 to -43), not statistically significant (Time: F=0.015, 

df=1, p=0.905; Group: F=0.0470, df=4, p=0.757; Group•Time: F=1.232, df=4, p=0.339).   

Two participants in Group E had high VAS scores; lithium reduced VAS scores in both. 
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ASIA Grade, Levels, and Scores.  In HK, 1 of 8 participants (7%) converted from AIS A to B, 

4 gained 2-5 points in touch scores, and 2 had 2-3 point motor score increases.  In KM, 2 

participants switched from AIS A to B (10%) and three from AIS A to C (15%). Neurological 

levels descended one segment in 6 participants (30%).  Ten participants (50%) gained 1-10 

touch points and 9 (45%) gained 1-8 pinprick points between w0 and w41-87. Mean 

sensory scores increased over time, i.e. touch scores increased 1.7 points (Time, F=9.869, 

df=1, p=0.007; Group, F=0.346, df=4, p=0.299; Group•Time, F=0.535, df=4, p=0.712) and 

pinprick scores increased 2.6 points (Time, F=8.984, df=1, p=0.009; Group, F=8.984, df=4, 

p=0.284; Group•Time, F=0.455, df=4, p=0.768).  Motor scores did not change significantly 

(Time: F=1.800, df=1, p=0.200; Group: F=0.145, df=4, p=0.962; Group•Time: F=0.800, df=4, 

p=0.544), one participant gained 2 and another gained 4 points.  

Locomotor Training.  Participants in HK did not receive locomotor training.  In KM, 17 of 

20 participants received intensive locomotor training.  Before treatment, 4 participants could 

not stand (KLS I), fifteen needed help to stand (KLS II), and one walked in a rolling walker 

with minimal assistance (KLS IV), i.e. an assistant pulled on ropes to stabilize knees during 

walking.  By w14-24, 17 of 20 participants (85%) were training at KLS IV (figure 6).  Nine 

participants went home at 14 weeks because they reached a plateau (n=6) or stopped 

training (n=3) due to tibial fractures in two cases or swollen knee in one case. After going 

home, four participants did not continue walking and regressed.  At 41-87w, only thirteen 

(65%) walked at KLS IV and two (10%) walked unassisted with 4-point walkers (KLS VI).  

KLS at 41-87w differed significantly from w0 (Z=3.532, p<0.0005).   

Walking Recovery.  In HK, no participants walked before or after treatment.  In KM before 

treatment, 16 participants (80%) could not walk (WISCI 0), one walked <10m (WISCI 1), 

one walked 10m (WISCI 2) in parallel bars with braces and 2 assistants, and two walked 

10m in a walker with braces and no assistants (WISCI 9).  At 41-87w, 5 participants had 

WISCI 0, two were WISCI 2, six (30%) walked 10m with one assistant (WISCI 6), and seven 

(35%) walked without assistance (WISCI ≥7).  WISCI scores at 41-87w differed from W0 

(Z=3.315, p=0.001). WISCI and KLS correlated highly (r=0.925, p<0.0005). 
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SCIM Scores.  The SCIM has 19 subscores covering self-care, respiration and sphincters, 

and mobility.  In HK, SCIM scores did not change significantly. In KM, most participants 

increased their SCIM scores.  Repeated measures ANOVA confirmed that mean SCIM scores 

increased over time (F=51.194, p<0.0005) by 19.6±2.67 points between w0 and 41-87w.  

Fourteen of 19 SCIM subscores, i.e. except feeding, grooming, respiration, outdoors mobility 

(>100m) and stair management, improved significantly between w0 and 41-87w (Figure 7-

8).  The self-care subtotal score accounted for 3.6 points while the respiration and sphincter 

subtotal accounted for 9.7 points, and the mobility subtotal accounted for 6.3 points.  The 

bladder, bowel, and toilet subscores accounted for almost half of the SCIM score 

improvement.  At w0, 2 (10%) participants were independent for bladder and bowel care but 

twelve (60%) became independent by 41-87w.   Two (10%) participants were catheter-free 

at w0 but ten (50%) were catheter-free at 41-87w.  Bowel care subscores indicate that 12 

(60%) participants did not require assistance for bowel procedures at 41-87w, compared to 

2 participants before treatment.  Likewise, 65-70% of participants could transfer from bed to 

wheelchair and from wheelchair to toilet and tub at 41-87w, compared to 5-30% at w0. At 

41-87w, 35% of participants could walk without assistance or supervision indoors and for 

moderate distances up to 100m.  For distances >100m, only 2 participants walked and the 

rest used wheelchairs.  Table 1 shows means and standard errors of total SCIM and 

subscores, as well as t-values, Wilcoxon Z values, and p-values.  

Treatment Effects.  Comparison of walking scores among the treatment groups revealed 

that all 8 participants in group B and C showed improvement of WISCI scores by 6 points or 

greater.  Only 2 participants showed improved walking in groups A and D, and only 1 

participant in group E.  Although this was not statistically significant, the data does not 

support beneficial effects of MP or lithium.  Almost every participant except for one in 

Group B showed improved SCIM scores.  Severe adverse events (SAE) did not differ amongst 

the groups, occurring in four of the five treatment groups, with two in Group A, one in Group 

B, one in Group C, and one in Group D.  Figure 9 shows the ANOVA of change of WISCI 

scores in the five treatment groups.  Mean change of WISCI scores increased from 3.5 to 6.1 

to 9.1 in Groups A, B, and C, fell to 2.9 in Group D, and fell to 0.4 in Group E.   
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Discussion 

The HK trial showed that 4-8 µL of UCBMNC can be safely injected into spinal cord above 

and below the injury site.   MR-DTI suggest that white matter gaps decreased at the injury 

site and two participants showed bundles of fibers growing across the injury site into 

surrounding spinal cord at 6-18 months.  However, the participants did not recover motor 

function.  The KM trial showed that 4, 8, and 16 µL of UCBMNC can be safely injected into 

the spinal cord.  Over half of the participants recovered walking with minimal or no 

assistance by 6-12 months after UCBMNC transplants and locomotor training, as well as 

increased independence in activities of daily living, including self-care, bowel and bladder 

function, and mobility.   This is an unprecedented recovery for complete chronic SCI. 

Walking recovery is rare in patients with chronic complete SCI 109-111.  The finding that 

15:20 participants (75%) with chronic complete SCI could walk 10m and seven (35%) 

walked 10m without manual assistance a year after treatment is unprecedented. SCIM 

indoor mobility subscores confirmed that 7 participants (35%) walked indoors without 

assistance at one year after treatment.  Likewise, mobility subscores for moderate distances 

showed the same 7 participants (35%) walking 10-100m without assistance, 2 (10%) 

walking with supervision, and the rest using wheelchairs.  For distances of >100m, only 2 

participants (10%) walked while the rest used wheelchairs.  Thus, 35% of participants used 

walking for indoors and for moderate distances <100m but most participants preferred 

wheelchairs for longer distances >100 m.   

Late conversions from AIS A to B or C are also rare.  As Kirschblum, et al. 112 pointed out, 

among 987 patients who were neurologically complete (AIS A) at one year, only 3.5% 

improved to AIS B and 1.05% improved to AIS C and D by 5 years.  In HK, 1 of 8 participants 

converted from AIS A to B (12.5%).  In KM, 2 participants converted from AIS A to B (10%) 

and three from AIS A to C (15%), a conversion rate of 25%. These changes were statistically 

significant (Z=2.070, p=0.038) but did not vary among treatment groups. 
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SCIM scores indicated significant improvements in independence for bladder function.  

Before treatment, 18 participants (90%) required assistance for bladder care and 15 

participants (75%) used catheters.  At w14-24, 16 participants (80%) were still 

catheterizing.  At 1 year after treatment, 12 (60%) participants did not need assistance for 

bladder care and 11 participants (55%) no longer used catheters.  Three participants (15%) 

did not use catheters or drainage devices. 

Bowel function also improved.  Before treatment, 6 participants (30%) had irregular or low 

frequency bowel movements (<1/3 days) and 90% required assistance.  By discharge from 

hospital at 14-24 weeks, all participants became regular but 75% still needed assistance and 

had occasional accidents.  By 41-87w, however, 60% did not require assistance and rarely 

had accidents.  Four participants (20%) had no accidents.   We plan to bring the participants 

back for further evaluation. 

MP and lithium may have reduced walking recovery.  Animal studies suggest that MP 

improves survival of transplanted cells 113 and lithium should improve walking recovery 90 

after acute SCI.   Only 2 of 8 participants (25%) in Groups D (6.4 million cells plus MP) and E 

(6.4 million cells plus MP and lithium) recovered walking to 6 points on WISCI, compared to 

8 of 8 participants (100%) in Groups B (3.2 million cells) and C (6.4 million cells).  Lithium 

reduced neuropathic pain in two participants in Group E, consistent with our earlier report 

that lithium reduces neuropathic pain.114  

Change in WISCI scores (∆WISCI) increased with cell dose.  As Figure 9 shows, ANOVA of 

∆WISCI in the five treatment groups showed progressive increase in ∆WISCI in Groups A, B, 

and C but ∆WISCI decreased in Groups D and Group E.   Post hoc tests (Scheffés) suggest 

that Group C and E differed significantly at p<0.0051.  However, one patient (#18) in Group 

E inadvertently received placebo rather than lithium tablets, one patient (#19) was already 

walking at WISCI 9 when the trial began, and one patient (#20) stopped walking training 

due to knee swelling.  Thus, only one patient in Group E represented a valid comparison 

with Group C.  Further clinical trials are needed to determine whether lithium is effective.   
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Two other findings are noteworthy in the KM trial. First, two participants had to discontinue 

locomotor training due to old bone fractures.  We should screen participants in future trials 

for old bone fractures.  Second, many participants did not show improved motor scores 

despite recovering walking and other programmed spinal cord functions, i.e. micturition 

and defecation.  We hypothesize that UCBMNC transplants stimulated growth of axons that 

activate lumbosacral central pattern generators for walking, micturition, and defecation but 

only in participants who received intensive locomotor training. 115   This would explain why 

most patients could walk but could not voluntarily contract individual muscles or feel specific 

sensory signals in their legs at one year after treatment.  It is possible that some patients will 

recover more voluntary motor and sensory function later. 

Our trials left several critical questions unanswered.  First, can intensive locomotor training 

alone improve locomotor function in people with chronic complete SCI?  Several years ago, 

most doctors would have replied that locomotor training alone cannot restore locomotion to 

people with chronic complete SCI.  Second, does untethering surgery improve the effects of 

intensive locomotor training?  In our trials, all patients that received transplants also received 

untethering surgery.  Many neurosurgeons 116-131 have reported beneficial effects of 

untethering surgery in patients with spina bifida or syringomyelic cysts.   Third, does lithium 

improve locomotor recovery when combined with UCBMNC and intensive locomotor 

training?  We 114 have previously observed that a 6-week course of lithium does not improve 

motor or sensory function in patients with chronic complete SCI but these patients did not 

receive any locomotor training.  If lithium does not improve function when combined with 

UCBMNC and locomotor training, we should exclude it from future phase III trials.   

We have proposed further phase II trials to answer these questions.  The first trial will 

ascertain whether locomotor training alone or untethering surgery plus locomotor training 

restore walking in people with chronic complete SCI.   This trial (NCT02663310, 

http://clinicaltrials.gov) is underway in Kunming, comparing walking outcomes of 30 people 

with chronic complete SCI, randomized to untethering surgery or no surgery, followed by 6 

months of intensive locomotor training.   We have applied for two phase II trials, one in India 
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and the other in the United States, to ascertain whether lithium improves locomotor 

recovery of participants with chronic SCI, randomized to UCBMNC transplants or UCBMNC 

plus a 6-week course of lithium, followed by 6 months of intensive locomotor training.   

These trials will provide the following important information needed for design of pivotal 

phase III trials of UCBMNC treatment.  First, if the trials show no significant benefits of 

adding lithium to UCBMNC transplants, lithium should be omitted from the phase III trials.  

Second, if locomotor training alone or untethering surgery plus locomotor training improves 

walking recovery in patients with chronic complete SCI, it would provide justification for a 

surgery control group involving untethering only.  Finally, intensive locomotor training (6 

hours a day, 6 days a week for 6 months) has not been practiced outside of Kunming.  It is 

important to establish that such training is feasible elsewhere since our trials to date suggest 

that intensive locomotor training is essential for recovery of walking. 

In summary, our data indicate that UCBMNC can be safely transplanted into the spinal cord 

of people with chronic SCI, intensive locomotor training is essential for motor recovery, and 

UCBMNC transplants combined with intensive locomotor recovery can lead to significant 

locomotor, bowel, and bladder recovery in people with chronic complete SCI.  However, the 

patients did not recover much voluntary motor function.  Some participants recovered 

sensory dermatomes close to the injury site and as many as a quarter of the patients 

recovered anal sensation and voluntary sphincter contraction, converting from AIS A to B 

and C.   Further clinical trials are necessary to determine whether these improvements are 

due to UCBMNC, untethering surgery, or intensive locomotor training.   
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Figure Legends 

Figure 1.  Neurological levels and scores in Hong Kong (HK).  Each column represents 

a participant in the trial:  dark green indicates segments with normal sensation and 

motor function, dark green with white letters indicates the neurological level before 

treatment, red with white letters indicates changed neurological level one year after 

treatment, light green indicates zone of partial preservation (ZPP) before treatment, 

and pink indicates ZPP after treatment.  Individual participant data are listed, 

including age and years after injury, sex, medium-high resolution (medium for HLA-A 

and –B and high for HLA-Dr) HLA matches out of 6.  AIS is ASIA:ISCOS Impairment 

Scale where A is complete, B is sensory incomplete, and C is motor incomplete that 

<50% of motor score in the legs. None of the participants received walking training 

or recovered walking; hence, no Kunming Locomotor Scores (KLS) or Walking Index 

of Spinal Cord Injury (WISCI) scores are listed.  Motor score is the sum of muscle 

grades (0-5) for ten muscles on each side of the body, totaling 100 points.  Touch and 

Pin refer to light touch and pinprick scores (0=no, 1=abnormal, 2=normal) for 28 

dermatomes on each side of the body.  MAS is modified Ashworth scale (0-4) for 

spasticity.  VAS is visual analog scale (0-100) for pain.  SCIM is spinal cord 

independence measure (0-100).  Red indicates improvement.  SAE (yellow) refers to 

severe adverse events. 

Figure 2.  Neurological levels and scores in Kunming (KM).  Each column represents a 

participant in the trial.  The color columns indicate the neurological level (green) at 

the time of treatment, improvements in neurological level (red), and improvements in 

ZPP or zones of partial preservation (pink), light green indicates ZPP before 

treatment. Two participants converted from complete to sensory incomplete, 3 

participants were converted to motor incomplete (AIS C).  Five participants had 

adverse events:  WH = wound healing, TF = tibial fracture, KS = knee swelling.  See 

legend for figure 1 for explanation. 
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Figure 3.  A magnetic resonance diffusion tensor image (MR-DTI) of the spinal cord 

before treatment. White matter tracts were selected from regions of interest (ROI) 

above the below the injury site and tract-tracing software was then used to identify 

adjacent pixels with similar diffusion tensors.  Descending tracts are colored purple 

and green while ascending tracts are colored blue.  A clear gap was present in the 

spinal cord at C6 vertebral level.   

Figure 4.  Magnetic resonance diffusion tensor images (MR-DTI) of the spinal cord 

of a participant before operation (Pre-op), at 6 months (6m), and 12 months (12m) 

after treatment.  Before operation, MR-DTI showed very atrophic descending fibers 

(blue), more ascending fibers (green), and a clear gap at the T4 injury site.  At 6 

months, the gap was still present.  At 12 months, both ascending and descending 

fibers were crossing the gap (upper right).  On the lower right image, ascending 

fibers (dark blue) were removed so that the descending fibers (light blue) could seen 

to extend into the lumbosacral spinal cord. 

Figure 5.  Magnetic resonance diffusion tensor images (MR-DTI) of a normal 

cervical spinal cord (A), an image of an injured spinal cord with a narrow gap before 

treatment (B), an image of an injured spinal cord with a wide gap before treatment 

(C).  D, E, and F show MR-DTI from a participant before, 6 months after, and 1.5 years 

after treatment.  Note the fibers crossing the gap.  G, H, I, and J show MR-DTI from a 

participant before, at 6 months, 1 year, and 2 years after treatment.  Note the 

narrowing of the white matter gap. 

Figure 6.  Kunming Locomotor Scale (KLS) and Walking Index of Spinal Cord Injury 

(WISCI).  KLS represents locomotor training stages: I indicates inability to stand, II is 

standing with assistance, III is standing without assistance, IV is walking in rolling 

walker with minimal assistance, V is walking in rolling walker without assistance, VI 
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is walking in four-point walker without assistance.  No participant trained with 

crutches (VII), cane (VIII), or without devices (IX, X).  WISCI reflects ability to 

ambulate 10 meters (10m) with devices, braces, and assistants: 0 indicates inability 

to stand or to participate in assisted walking; 1 is ambulating <10m and 2 is 

ambulating 10m in parallel bars with braces and 2 assistants; 3 is ambulating 10m in 

parallel bars with braces and 1 assistant; 4 is ambulating 10m in parallel bars with no 

braces and 1 assistant; 5 is ambulating 10m in parallel bars without braces or 

assistant; 6 is ambulating 10m with a walker with braces & 1 assistant; 7 is 

ambulating 10m with 2 crutches, braces, & 1 assistant; 8 is ambulating 10m with 

walker, no braces, and 1 assistant; 9 is ambulating in a walker with braces and no 

assistant; 10 is ambulating with 1 cane or crutch, no braces, and 1 assistant; 11 is 

ambulating with 2 crutches, no braces, and 1 assistant; 12 is ambulating with 2 

crutches, braces, and no assistant; 13 is ambulating in a walker without braces or 

assistants.  No participant achieved WISCI scores higher than 13.   Missing w24 data 

were assumed to equal w14 data and w48 refers to 41-87w.   

Figure 7.  Spinal Cord Independence Measure (SCIM) mobility scores.  Indoor 

(indoor mobility on even surfaces), Moderate Distances (10-100m) and Outdoors 

(>100m):  0 = total assistance, 1 = electric wheelchair or manual assisted wheelchair, 

2 = moves independently with manual wheelchair, 3 = walks with supervision, 4 = 

walks with walking frame or crutches by swinging, 5 = walks with crutches or two 

canes with reciprocal gait, 6 = walks with one cane, 7 = needs leg orthosis only, 8 = 

walks without walking aids.   StairMgt (go up or down stairs):  0 = total assistance, 1 

= ascends and descends ≥3 steps with support or partial assistance, 2 = ascends and 

descends at least 3 steps with rail, crutch, or cane, 3 = ascends and descends at least 3 

steps without support or supervision.  Bedmobility (turn in bed and actions to 

prevent pressure sores):  0 = total assistance to turn and to sit up in bed, to push up 

in wheelchair, with or without adaptive devices, 1 = performs one of the above 

actions without assistance, 2 = performed 2-3 of above without assistance, 3 = 

independent.  GroundWheelchair (get into wheelchair from the ground):  0 = total 
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assistance, 1 = transfers independently with or without adaptive devices. 

Figure 8.  Spinal Cord Independence Measure Toilet and Transfer Functions.  Bladder:  

0 = indwelling catheter, 3 = residual urinary volume (RUV) >100ml with assisted 

catheterization, 6 = RUV <100ml with intermittent self-catheterization (ISC) and 

external drainage (ED) with assistance, 9 = ISC and ED without assistance, 11 = ISC 

without ED, 13 = RUV <100ml, only ED and no assistance; 15 = RUV <100ml, no ED.  

Bowel:  0 = irregular or very low frequency movements <1/3 days, 5 = regular, 

requires assistance for suppositories, rare accidents <2/month, 8 = regular without 

assistance, rare accidents, 10 = regular, no assistance or accidents.  Toilet:  0 = total 

assistance, 1 = partial assistance, does not clean self, 2 = partial assistance, cleans self, 

4 = independent but requires adaptive device, 5 = independent without adaptive 

devices.  WheelchairToilet (transfers to and from toilet, locking wheelchair, lifting 

footrests, removing and adjusting armrests): 0 = total assistance, 1 = partial 

assistance or supervision, 2 = independent.  Bedwheechair (transfers from bed to 

wheelchair):  0 = total assistance to lock wheelchair, lift footrests, remove and adjust 

arm rests, transferring, lifting feet, 1 = partial assistance or supervision and/or 

adaptive devices, 2 = independent or does not require wheelchair.   WheelchairCar 

(approach a car, lock wheelchair, remove arm and footrests, transfers to and from car, 

bring wheelchair into and out of car):  0 = total  assistance, 1 = partial assistance or 

supervision/adaptive devices, 2 = independent.  

Figure 9.  Analysis of Variance (ANOVA) of change of WISCI (Walking Index of Spinal 

Cord Injury) between week 0 and week 48.  The ANOVA table indicated an F-value of 

6.765 (p=0.0026) amongst treatment groups (Rx).  The lower left graph shows means 

and standard errors of mean.  Group A received the lowest dose of 1.6 million cells, B 

received a higher dose of 3.2 million, Group C-E received the highest dose of 6.4 

million, Group D received the highest cell dose plus 30 mg/kg methylprednisolone 

(MP), and Group E received the highest cell dose plus MP and a 6-week course of oral 

lithium carbonate.  
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Table 1.  SCIM Scores and subscores 

Dependent Variable Max W0±sem (CI 95%) W48±sem (CI 95%) Δ±sem 

Paired Samples  
T-Test 

Wilcoxon Signed 
Ranks Test 

t p Z p 

SCIM Total 100 41·0±3·0 (34·7-47·3) 60·6±3·6 (52·9-68·2) 19·6±2·7 7.330 0.000 3.912 0.000 

SCIM Self Care 20 11·9±1·4 (8·87-14·8) 15·4±1·4 (12·4-18·4) 3·6±0·8 4.440 0.000 3.305 0.001 

  1· Feeding 3 2·5±0·2 (2·14-2·86) 2·6±0·2 (2·34-2·96) 0·2±0·1 1.143 0.267 1.134 0.257 

  2. A. Bathing (upper) 3 1·8±0·2 (1·36-2·34) 2·4±0·2 (1·96-2·94) 0·6±0·2 3.040 0.007 2.521 0.012 

      B. Bathing (lower) 3 0·8±0·2 (0·28-1·32) 1·8±0·3 (1·20-2·40) 1·0±0·4 3.979 0.001 2.976 0.003 

  3. A. Dressing (upper) 4 2·8±0·4 (2·05-3·55) 3·3±0·3 (2·67-3·93) 0·5±0·2 2.236 0.036 2.041 0.041 

      B· Dressing (lower) 4 1·6±0·4 (0·78-2·85) 2·7±0·4 (1·81-3·49) 1·0±0·5 2.761 0.012 2.395 0.017 

  4. Grooming 3 2·3±0·3 (1·75-2·85) 2·6±0·2 (2·11-2·99) 0·3±0·1 2.032 0.056 1.890 0.059 

SCIM R & S 40 18·8±1·2 (16·4-21·3)  28·5±1·3 (25·9-31·2) 9·7±1·5 6.570 0.000 3.728 0.000 

  5. Respiration 10 9·5±0·2 (9·08-9·92) 9·7±0·2 (9·36-10·04) 0·2±0·1 1.453 0.163 1.414 0.157 

  6. Bladder 15 4·6±0·8 (2·92-6·38) 9·8±1·0 (7·70-11·80) 5·1±1·0 4.972 0.000 3.218 0.001 

  7. Bowel 10 3·8±0·6 (2·53-5·07) 7·2±0·4 (6·27-8·13) 3·4±0·8 4.363 0.000 3.142 0.002 

  8. Toilet 5 0·9±0·3 (0·33-1·47) 1·9±0·4 (1·11-2·69) 1·0±0·3 2.874 0.010 2.553 0.011 

SCIM Mobility R & T 10 4·5±0·8 (2·99-6·10) 7·6±0·8 (5·87-9·33) 3·1±0·6 5.431 0.000 3.755 0.000 

  9. Bed mobility 5 2·8±0·5 (1·69-3·91) 4·8±0·5 (3·82-5·78) 2·0±0·4 4.873 0.000 3.256 0.001 

  10. Bed Wheelchair 2 0·9±0·2 (0·56-1·34) 1·5±0·2 (1·03-1·87) 0·5±0·2 3.249 0.004 2.640 0.008 

  11. Wheelchair Toilet 2 0·8±0·1 (0·45-1·05) 1·4±0·2 (0·91-1·79) 0·6±0·1 4.485 0.000 3.207 0.001 

SCIM Mobility I & O 30 5·8±0·7 (4·44-7·16) 9·0±0·9 (7·04-10·96) 3·2±0·7 4.913 0.000 3.398 0.001 

  12. Indoors 8 1·9±0·2 (1·53-2·27) 2·7±0·3 (2·15-3·25) 0·8±0·2 3.559 0.002 2.805 0.005 

  13. Moderate (≤100m) 8 1·9±0·2 (1·44-2·26) 2·7±0·3 (2·11-3·29) 0·9±0·2 3.489 0.002 2.853 0.004 

  14. Outdoors (>100m) 8 1·6±0·2 (1·21-2·09) 1·9±0·2 (1·47-2·33) 0·3±0·1 2.032 0.056 1.890 0.059 

  15. Stair Management 3 0 0 0   0.000 1.000 

  16. Wheelchair-car 2 0·3±0·1 (-0·01-0·51) 0·9±0·2 (0·47-1·33) 0·7±0·2 3.577 0.002 2.739 0.006 

  17. Ground-wheelchair 1 0·2±0·1 (-0·02-2·09) 0·8±0·3 (0·18-1·42) 0·7±0·3 2.156 0.044 2.714 0.007 

SCIM Mobility All 40 10·3±1·3 (7·63-12·97) 16·6±1·6 (13·3-19·9) 6·3±0·9 6.779 0.000 3.789 0.000 

Explanation. R & S refers to respiration and sphincters, R & T refers to room and toilet, I & O refers to indoor and outdoors.  W0 is 
week 0 or baseline score while W48 represents 41-87w mean scores ± sem with 95% confidence interval (CI 95%).  Δ is the 
difference (mean ± sem) between W0 and W48 scores.  We used Paired Samples T-Test and Wilcoxon Signed Ranks Test to 
compare findings at W0 and W48. 


