363 research outputs found

    Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.

    Get PDF
    During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis

    Inorganic carbon promotes photosynthesis, growth, and maximum biomass of phytoplankton in eutrophic water bodies

    Get PDF
    1.The traditional perception in limnology has been that phytoplankton biomass in lakes is limited by phosphorus, nitrogen, and light, but not by dissolved inorganic carbon (DIC) because CO2 can be supplied from the atmosphere. We tested the possibility of carbon limitation of photosynthesis, growth, and biomass accumulation of phytoplankton communities across an alkalinity and DIC gradient (0.15–3.26 mM) in nutrient‐rich freshwater. 2.During 47‐day long experiments, we measured phytoplankton biomass, organic carbon, calcium, DIC, pH, and oxygen in indoor, constantly mixed mesocosms with either no removal or a 70% weekly removal of the biomass. Photosynthesis was measured in the morning and in the afternoon at high biomass. 3.Maximum biomass and organic carbon production increased two‐ to four‐fold with DIC, which supported 7% of organic carbon production at low DIC and 53% at high DIC concentration, while atmospheric CO2 uptake supplied the remainder. Weekly biomass removal increased growth rates through improved light conditions leading to enhanced total phytoplankton biomass production at high DIC. Photosynthesis was significantly higher in the morning compared to afternoon due to daily DIC depletion. 4.We conclude that phytoplankton photosynthesis, growth rate, maximum biomass, and organic carbon production can be markedly carbon limited in eutrophic lake waters. Consequently, lakes of high DIC and pH can support a faster primary production by greater DIC use and chemically enhanced atmospheric CO2 uptake.publishedVersio

    A multi-disciplinary investigation of the AFEN Slide: The relationship between contourites and submarine landslides

    Get PDF
    Contourite drifts are sediment deposits formed by ocean bottom currents on continental slopes worldwide. Although it has become increasingly apparent that contourites are often prone to slope failure, the physical controls on slope instability remain unclear. This study presents high-resolution sedimentological, geochemical and geotechnical analyses of sediments to better understand the physical controls on slope failure that occurred within a sheeted contourite drift within the Faroe-Shetland Channel. We aim to identify and characterize the failure plane of the late Quaternary landslide (the AFEN Slide), and explain its location within the sheeted drift stratigraphy. The analyses reveal abrupt lithological contrasts characterized by distinct changes in physical, geochemical and geotechnical properties. Our findings indicate that the AFEN Slide likely initiated along a distinct lithological interface, between overlying sandy contouritic sediments and softer underlying mud-rich sediments. These lithological contrasts are interpreted to relate to climatically-controlled variations in sediment input and bottom current intensity. Similar lithological contrasts are likely to be common within contourite drifts at many other oceanic gateways worldwide; hence our findings are likely to apply more widely. As we demonstrate here, recognition of such contrasts requires multi-disciplinary data over the depth range of stratigraphy that is potentially prone to slope failure

    Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake

    Full text link
    Phytoplankton abundance in tropical lakes is more often judged to be limited by nitrogen than phosphorus, but seldom does the evidence include controlled enrichments of natural populations. In January 1980 we performed the first experimental fertilization in an equatorial African soda lake, Lake Sonachi, a small, meromictic volcanic crater lake in Kenya. During our study the natural phytoplankton abundance was ca. 80 μg chl a /l, and the euphotic zone PO 4 and NH 4 concentrations were less than 0.5 μM. In the monimolimnion PO 4 reached 180 μM and NH 4 reached 4,600 μM. Replicate polyethylene cylinders (5 m long, 1.2 m 3 ) were enriched to attain 10 μM PO 4 and 100 μM NH 4 . Phytoplankton responses were measured as chlorophyll, cell counts and particulate N, P and C. After two days, the chlorophyll increase in the P treatment was significantly higher than the control ( P <0.01) while the N treatment was not. After five days the molar N/P ratio of seston was the same in the N treatment and control (23) but only 6 in the P treatment. The molar N/P ratio of seston in an unenriched Lake Sonachi sample was 21 and in samples from Lakes Bogoria and Elmenteita, two shallow soda lakes in Kenya, the ratios were 12 and 70 respectively. We conclude that limitation of phytoplankton abundance by phosphorus can occur even in some tropical African soda lakes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47742/1/442_2004_Article_BF00367954.pd

    Shrinking and Splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide

    No full text
    International audienceClimate, and in particular **the spatial pattern of precipitation, is thought to affect* *the topographic and tectonic evolution of mountain belts through erosion. Numerical model simulations of landscape erosion controlled **by horizontal tectonic motion or orographic precipitation result in the asymmetric topography that characterizes most natural mountain belts, and in a continuous migration of the main drainage divide. The effects of such a migration have, however, been challenging to observe in natural settings. Here I document the effects of a lateral precipitation gradient on a landscape undergoing constant uplift in a laboratory modelling experiment. In the experiment, the drainage divide migrates towards the drier, leeward side of the mountain range, causing the drainage basins on the leeward side to shrink and split into* *smaller basins. This mechanism results in a progressively increasing number of drainage basins on the leeward side of the mountain range as the divide migrates, such that the expected relationship between the spacing of drainage basins and the location of the main drainage divide is maintained. I propose that this mechanism could clarify the drainage divide migration and topographic asymmetry found in active orogenic mountain ranges, as exemplified by the Aconquija Range of Argentin

    Prodigious submarine landslides during the inception and early growth of volcanic islands

    Get PDF
    Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth’s surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard

    Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340

    Get PDF
    IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor-sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of pre-existing low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or micro-faulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor-sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits comprised of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution dataset to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes. This article is protected by copyright. All rights reserved

    Lessons learned from monitoring of turbidity currents and guidance for future platform designs

    Get PDF
    Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidity currents have only been measured in a few locations worldwide, in relatively shallow water depths (≪2 km). Here, we share lessons from recent field deployments about how to design the platforms on which instruments are deployed. First, we show how monitoring platforms have been affected by turbidity currents including instability, displacement, tumbling and damage. Second, we relate these issues to specifics of the platform design, such as exposure of large surface area instruments within a flow and inadequate anchoring or seafloor support. Third, we provide recommended improvements to improve design by simplifying mooring configurations, minimising surface area, and enhancing seafloor stability. Finally we highlight novel multi-point moorings that avoid interaction between the instruments and the flow, and flow-resilient seafloor platforms with innovative engineering design features, such as ejectable feet and ballast. Our experience will provide guidance for future deployments, so that more detailed insights can be provided into turbidity current behaviour, and in a wider range of settings
    corecore