6,414 research outputs found

    Research opportunities in loss of red blood cell mass in space flight

    Get PDF
    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight

    The influence of 6 weeks of maximal eccentric plantarflexor training on muscle-tendon mechanics

    Get PDF
    Resistance training can influence muscle-tendon properties including strength, flexibility, stretch tolerance and muscle-tendon stiffness; however the specific influence of eccentric-only training is unknown. Therefore, the aims of the present study were to examine the effects of a 6-week maximal eccentric resistance training programme on isometric plantarflexor moment (MVC), dorsiflexion range of motion (ROM), stretch tolerance (peak passive moment), muscle and tendon stiffness and running economy. Thirteen recreationally active men (age = 20.0 ± 0.9 yr, mass = 75.9 ± 8.5 kg, height = 1.8 ± 0.1 m) volunteered for the study after giving written informed consent; ethical approval was granted from the University of Northampton. Training was performed twice weekly for six weeks and consisted of 5 sets of 12 repetitions of 3-s maximal eccentric contractions at 10°‱s-1 from 20° plantarflexion to 10° dorsiflexion. Maximal isometric plantarflexor moment, dorsiflexion ROM, stretch tolerance, and muscle, tendon and muscle-tendon unit (MTU) stiffness were measured using isokinetic dynamometry, real-time ultrasound and 3D motion analyses before and after the training. Running economy (VO2) was determined at a running speed equating to 70%VO2max using online gas analysis. Repeated measures t-tests were used to determine significant differences between pre- and post-training data, significance accepted at p0.05). Analysis of ultrasound data revealed a significant decrease in muscle stiffness (20.6%; p0.05). While the training-induced increase in plantarflexor strength was expected, the substantial increases in ROM, stretch tolerance and tendon stiffness, and the reduction in passive muscle stiffness, were important and novel findings. Interestingly, when measured during passive stretch, MTU stiffness remained unchanged while tendon stiffness increased and muscle stiffness decreased. These disparate findings have clear implications for testing methodologies, and indicate that imaging techniques must be utilised in order to examine the effects of interventions on specific tissues. As the training clearly enhanced the capacity of the muscle to tolerate both tissue loading and deformation, which are commonly associated with muscle strain injury, these data have clear implications for both muscular performance and injury risk

    DNMTs are required for delayed genome instability caused by radiation

    Get PDF
    This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited - Copyright @ 2012 Landes Bioscience.The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.This study is funded by NOTE, BBSRC and the Royal Society Dorothy Hodgkin Research Fellowship

    Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

    Get PDF
    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases \u3c100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy

    Optimum Monte Carlo Simulations: Some Exact Results

    Full text link
    We obtain exact results for the acceptance ratio and mean squared displacement in Monte Carlo simulations of the simple harmonic oscillator in DD dimensions. When the trial displacement is made uniformly in the radius, we demonstrate that the results are independent of the dimensionality of the space. We also study the dynamics of the process via a spectral analysis and we obtain an accurate description for the relaxation time.Comment: 17 pages, 8 figures. submitted to J. Phys.

    Chemical NOx budget in the upper troposphere over the tropical South Pacific

    Get PDF
    The chemical NOx budget in the upper troposphere over the tropical South Pacific is analyzed using aircraft measurements made at 6-12 km altitude in September 1996 during the Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM) Tropics A campaign. Chemical loss and production rates of NOx along the aircraft flight tracks are calculated with a photochemical model constrained by observations. Calculations using a standard chemical mechanism show a large missing source for NOx; chemical loss exceeds chemical production by a factor of 2.4 on average. Similar or greater NOx budget imbalances have been reported in analyses of data from previous field studies. Ammonium aerosol concentrations in PEM-Tropics A generally exceeded sulfate on a charge equivalent basis, and relative humidities were low (median 25% relative to ice). This implies that the aerosol could be dry in which case N2O5 hydrolysis would be suppressed as a sink for NOx. Suppression of N2O5 hydrolysis and adoption of new measurements of the reaction rate constants for NO2 + OH + M and HNO3 + OH reduces the median chemical imbalance in the NOx budget for PEM-Tropics A from 2.4 to 1.9. The remaining imbalance cannot be easily explained from known chemistry or long-range transport of primary NOx and may imply a major gap in our understanding of the chemical cycling of NOx in the free troposphere. Copyright 2000 by the American Geophysical Union

    Characterization of aerosol associated with enhanced small particle number concentrations in a suburban forested environment

    Get PDF
    Two elevated particle number/mass growth events associated with Aitken‐mode particles were observed during a sampling campaign (13–29 September 2004) at the Duke University Free‐Air CO2 Enrichment facility, a forested field site located in suburban central North Carolina. Aerosol growth rates between 1.2 and 4.9 nm hr−1 were observed, resulting in net increases in geometric mean diameter of 21 and 37 nm during events. Growth was dominated by addition of oxidized organic compounds. Campaign‐average aerosol mass concentrations measured by an Aerodyne quadrupole aerosol mass spectrometer (Q‐AMS) were 1.9 ± 1.6 (σ), 1.6 ± 1.9, 0.1 ± 0.1, and 0.4 ± 0.4 ÎŒg m−3 for organic mass (OM), sulfate, nitrate, and ammonium, respectively. These values represent 47%, 40%, 3%, and 10%, respectively, of the measured submicron aerosol mass. Based on Q‐AMS spectra, OM was apportioned to hydrocarbon‐like organic aerosol (HOA, likely representing primary organic aerosol) and two types of oxidized organic aerosol (OOA‐1 and OOA‐2), which constituted on average 6%, 58%, and 36%, respectively, of the apportioned OM. OOA‐1 probably represents aged, regional secondary organic aerosol (SOA), while OOA‐2 likely reflects less aged SOA. Organic aerosol characteristics associated with the events are compared to the campaign averages. Particularly in one event, the contribution of OOA‐2 to overall OM levels was enhanced, indicating the likelihood of less aged SOA formation. Statistical analyses investigate the relationships between HOA, OOA‐1, OOA‐2, other aerosol components, gas‐phase species, and meteorological data during the campaign and individual events. No single variable clearly controls the occurrence of a particle growth event

    Double precision trajectory program /DPTRAJ 2.2C/

    Get PDF
    Four part program computes trajectory of space probe moving in solar system and subject to variety of forces
    • 

    corecore