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Chemical N budget in the upper troposphere over the tropical 
South Pacific 

Martin G. Schultz, •'2 Daniel J. Jacob, • John D. Bradshaw, s Scott T. Sandholm, 4 
Jack E. Dibb, s Robert W. Talbot, s and Hanwant B. Singh a 

Abstract. The chemical N O• budget in the upper troposphere over the tropical South 
Pacific is analyzed using aircraft measurements made at 6-12 km altitude in September 
1996 during the Global Tropospheric Experiment (GTE) Pacific Exploratory Mission 
(PEM) Tropics A campaign. Chemical loss and production rates of N O• along the aircraft 
flight tracks are calculated with a photochemical model constrained by observations. 
Calculations using a standard chemical mechanism show a large missing source for N O•; 
chemical loss exceeds chemical production by a factor of 2.4 on average. Similar or greater 
NO• budget imbalances have been reported in analyses of data from previous field studies. 
Ammonium aerosol concentrations in PEM-Tropics A generally exceeded sulfate on a 
charge equivalent basis, and relative humidities were low (median 25% relative to ice). This 
implies that the aerosol could be dry in which case N2Os hydrolysis would be suppressed 
as a sink for NO•. Suppression of N205 hydrolysis and adoption of new measurements 
of the reaction rate constants for NO2 + OH + M and HNO3 + OH reduces the median 
chemical imbalance in the NO• budget for PEM-Tropics A from 2.4 to 1.9. The remaining 
imbalance cannot be easily explained from known chemistry or long-range transport of 
primary NO • and may imply a major gap in our understanding of the chemical cycling of 
N O• in the free troposphere. 

1. Introduction 

Reactive nitrogen oxides (NOx = NO + NO2 q- NOs + 
2 N205 q- HN02 q- HO2N02) play a critical role in the 
photochemical production of ozone in the troposphere, and 
they have a major effect on the abundance and partitioning 
of HOx radicals (= OH + peroxy species) which determine 

spect to oxidation to the reservoir species HNOs and PAN 
(2-10 days [Jacob et al., 1996]). Therefore one would ex- 
pect average N O• concentrations in the upper troposphere 
to be near a chemical steady state between loss by oxidation 
and recycling from the reservoirs. 

The most important N O• reservoir in the upper tropo- 
sphere according to current models is HNOs. HNOs is 

the oxidizing power of the troposphere. Sources of NO• in formed during daytime through oxidation of NO2 by OH 
the tropical upper troposphere include major contributions and during nighttime by hydrolysis of N205 on aqueous 
from convective input of NO• emitted at the surface, chem- aerosol surfaces (N20s itself is formed by reaction of NO2 
ical recycling from nitric acid (HNOs) and peroxyacetylni- with NOs, where NOs is produced by reaction of Os with 
trate (PAN) and production from N2 and 02 in lightning NO2). Regeneration of NOx from HNOs takes place during 
flashes. The residence time of air in the tropical upper tro- 
posphere is about 10 days [Prather and Jacob, 1997]. This 
is generally long compared to the lifetime of NOx with re- 
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daytime by photolysis and reaction with OH. Conversion of 
NO x to PAN in the upper troposphere takes place by photo- 
chemical degradation of acetone and other carbonyls [Singh 
et al., 1995]. PAN is photolyzed back to N O• (thermal de- 
composition of PAN is very slow in the upper troposphere). 
The cycling between N O• and PAN in the tropical upper 
troposphere is typically 10 times slower than the cycling be- 
tween NO• and HNOs [Jacob et al., 1996]. 

Observed HNOs / (NO + N02) concentration ratios 
(hereinafter denoted as RN) in the free troposphere can be 
compared to chemical steady state model calculations as 
a test of the cycling between NO• and HNOs [Chatfield, 
1994]. Model ratios reported in a number of studies overes- 
timate observed values by factors of 2-10 [Liu et al., 1992; 
Chatfield, 1994; Davis et al., 1996; Hauglustaine et al., 
1996; Jacob et al., 1992, 1996; Jaegl• et al., 1998] suggest- 
ing major flaws in our current understanding of the chemical 
budget of NO•. Similar overestimates are found in global 

6669 



6670 SCHULTZ ET AL.' NO, BUDGET IN TROPICAL UPPER TROPOSPHERE 

three-dimensional models [Brasseur et al., 1996; Wang et 
al., 1998a,b; Lawrence and Crutzen, 1998; Hauglustaine et 
al., 1998]. Only a few studies find no discrepancy [Fan et 
al., 1994; Singh et al., 1998]. 

It has been proposed that the overestimate of R?• in chem- 
ical models is due to a perturbation of the chemical equilib- 
rium by primary N Ox sources from lightning, aircraft, or 
deep convection [Singh et al., 1996b; Liu et al., 1996; Smyth 
et al., 1996; Kawakami et al., 1997; Prather and Jacob, 
1997; Jaegl• et al., 1998]. Prather and Jacob [1997] used a 
simple box model to determine the mean shift in upper tro- 
pospheric (above 12 km altitude) R?• due to tropical deep 
convection. With a dynamical turnover rate of 10%/day and 
a chemical lifetime of NO x of 10 days, they find that injec- 
tion of primary NO x from convection and lightning would 
lower R?• by a factor of 2 from its chemical equilibrium 
value. The effect would be less at lower altitudes because 

of the shorter lifetime of NO •. In an analysis of aircraft data 
(8-12 km) over the central United States, Jaegld et al. [ 1998] 
found that the discrepancy between simulated and observed 
NOu/(NO + NO2) ratios (NOu= NOx+ HNOa+ organic 
nitrates) was anticorrelated with the number concentration 
of condensation nuclei. They concluded that convective in- 
jection of boundary layer N O• plays an important role in 
lowering R•. 

phase species observed. This data set is then used to con- 
strain the chemical model. For the discussion of the aerosol 

chemical composition in section 3, the temporal resolution 
of the aerosol measurements (• 20 min) is retained. 

Figure 1 shows vertical profiles for the mixing ratios of 
several NO v species over the tropical South Pacific during 
PEM-Tropics A. N O• was computed from the sum of ob- 
served NO (measured with two-photon laser induced fluo- 
rescence (TP-LIF) [Bradshaw et al., 1985; Sandholm et al., 
1990, 1994, 1997]) and locally computed chemical model 
values for NO2, HO2N02, NOs, and N205 [Schultz et al., 
1999]. Schultz et al. [1999] compared observed and mod- 
eled NO2/NO ratios and found agreement to within 30% 
(interquartile range) at all altitudes above 2 km. We will use 
calculated NO2 throughout the remainder of this paper be- 
cause of the greater availability. HNOa was measured with 
the mist chamber technique [Talbot et al., 1988, 1990, 1997], 
and PAN was measured with a gas chromatography electron 
capture detector (GC/ECD) system [Singh and Salas, 1983; 
Gregory et al., 1990a]. Table 1 compiles the instrumental 
accuracies and limits of detection (LOD) for the key NO u 
species during PEM-Tropics A. 

Concentrations of PAN and HNOa show pronounced 
maxima in the lower and middle free troposphere (between 
2 and 8 km), reflecting the extensive biomass burning influ- 

Other investigations have attempted to explain the model ence during PEM-Tropics A [Schultz et al., 1999; Talbot et 
overestimates of R?• by invoking a fast chemical reaction to al., 1999a]. Concentrations of NO• increase steadily with 
convert HNOa to NO• in sulfate aerosols [Chatfield, 1994; altitude, reaching typical values of 50 parts per trillion by 
Fan et al., 1994] or on soot [Hauglustaine et al., 1996; Lary volume (pptv) at 8-10 km (Figure lb). The observed R?• is 
et al., 1997]. However, there is so far no laboratory evidence about 5 mol/mol in the lower and middle troposphere and 
for fast conversion of HNOa to NO• under conditions rep- decreases to 1 mol/mol at 8 km and to about 0.4 mol/mol at 
resentative of the upper tropospheric aerosol [Jacob, 1999]. 11 km (Figure le). The median NO/NO x ratio (not shown) 

We present in this paper a chemical model analysis of above 6 km is 0.53 (interquartile range 0.47-0.58) for zenith 
airborne observations made up to 12 km altitude over the angles < 60 ø. Figure I f displays the concentration ratio 
remote tropical and subtropical South Pacific in September of aerosol nitrate (NO•-) to gas-phase HNOa. Aerosol ni- 
1996 (PEM-Tropics A [Hoell et al., 1999]). This study ex- trate was measured from bulk filter samples [Dibb et al., 
tends the brief discussion of the chemical NO• budget given 1999]. The median NO•-/HNOa ratio at 6-12 km is 0.29 
by Schultz et a/.[1999] in light of new kinetic data and infor- mol/mol, and the interquartiles span the range from 0.15 to 
mation on aerosol composition. A review of previous studies 0.91 mol/mol. Of the NO•- data above 6 km, 55% are below 
is also presented. the limit of detection (10 pptv). In marine convective out- 

flow, N O•- concentrations occasionally exceeded gas-phase 

2. Chemical NO• Budget During HNOa concentrations by up to a factor of 4. 
PEm-Tropics A Table 2 gives medians and interquartile ranges for the air 

mass composition over the tropical and subtropical South 
The Global Tropospheric Experiment (GTE) Pacific Ex- Pacific at 6-12 km altitude. The subset of data with very low 

ploratory Mission (PEM) Tropics A campaign [Hoell et al., relative humidity (< 10%) exhibits significantly enhanced 
1999] surveyed the troposphere over the South Pacific in pollution presumably from biomass burning (compare con- 
September and October 1996, during the peak of the burning centrations of CO, C2H2, PAN, and organic acids of this 
season in the Southern Hemisphere. Two aircraft, a DC-8 subset with the overall data). While the lower R?• and higher 
and a P-3B, each spent more than 120 hours in flight con- C2H2/C0 ratio indicate relatively fresh pollutionin these air 
ducting extensive trace gas measuremements. In this paper masses, the high concentrations of HNOa and organic acids 
we focus on data from the DC-8 aircraft because it had a suggest that they have not encountered scavenging in con- 
higher ceiling (12 km compared to 8 km for the P-3B) and vection for at least a couple of days. 
there were no HNOa measurements on board the P-3B. We We calculated chemical production and loss rates of NO• 
restrict our analysis to the tropical and subtropical South Pa- along the PEM-Tropics A DC-8 flight tracks with a chemical 
cific (0-30øS, 165øE-105øW) and to altitudes above 6 km. point model [Schultz et al., 1999]. The model is constrained 
The aircraft data are averaged over the HNOa measurement by concurrent observations of Oa, HNOa, PAN, H20, CO, 
intervals (•3 min), which were the longest of all the gas- H202, CHaOOH, hydrocarbons, temperature, and photol- 
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Figure 1. Vertical profiles of (a) NO, (b) NOx (= NO + NO2+ NO3-+- 2 N2Os+ HNO2+ HO2NO2), 
(c) gas-phase HNOa, and (d) PAN concentrations as well as (e) the HNOa/(NO + NO2) ratio (RN) and 
(f) the ratio of aerosol NO] to gas-phase HNOa concentrations. Concentrations of NO, PAN, HNOa 
and NO•- are aircraft measurements from PEM-Tropics A (0-30øS, 165øE-105øW). Concentrations of 
NOx species other than NO are photochemical model values. NO data are displayed for zenith angles 
< 60 ø only. Circles are median values over 1 km altitude bands, stars denote means, and the shaded areas 
span the interquartile ranges. NO•- values below the limit of detection (LOD) are set to 1/2 x LOD for 
Figure lf. 

ysis frequencies for NO2 and for O3 to O(1D). The NO• [1999],i.e. '7 = 0.1 for N2Os and-7 = 0.01 (upper limit) for 
concentration is chosen so that the model NO reproduces the NO3. Uptake of NO3 was generally negligible. The aerosol 
observed NO within 1% at the solar time of measurement. surface area could not be reliably computed from measure- 
The model computes local HOx concentrations and chemi- ments aboard the DC-8 and was specified with the median 
cal rates in diurnal steady state, defined by repeatability of value of 3/zm 2 cm -a obtained from the companion P-3B air- 
model results over a 24 hour solar cycle. Acetone was not craft at tropical latitudes above 6 km [Clarke et al., 1999]. 
measured, and a typical concentration of 400 pptv was as- 
sumed [Singh et al., 1995; McKeen et al., 1997]. Our results 
are only modestly sensitive to this assumption (a 30% de- 
crease in the acetone concentration leads to a 10% improve- 
ment in the chemical NOx budget imbalance). The standard 
gas-phase chemical mechanism of the model follows the rec- 
ommendations of JPL-97 [DeMore et al., 1997], completed 
for volatile organic compound chemistry by Atkinson et al. 
[1997]. Absorption cross sections and quantum yields for 
photolysis of acetone are from Gierczak et al. [1998]. 

Heterogeneous oxidation of NO• to HNOa is described 
as first-order losses of N2Os and NOa on aerosol surfaces. 
Reaction probabilities follow the recommendations of Jacob 

(Schultz et al. [1999] tried to estimate the aerosol surface 
area by correlating condensation nuclei counter measure- 
ments aboard the DC-8 with size-resolved measurements 

made aboard the P-3B aircraft. This approach yielded av- 
erage aerosol surface areas of • 24/•m 2 cm -a above 6 km 
over the tropical and subtropical South Pacific which is about 
a factor of 10 higher than typical surface areas measured in 
the free troposphere (A. CLarke, personal communication, 
1998). The difference could not be fully resolved.) 

Table 3 gives the mean and median rates of individual re- 
actions important in the model NO• budget at 6-12 km alti- 
tude. There is a large budget imbalance throughout the up- 
per troposphere, similar to previous studies. The loss rate 
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Table 1. Instrument Parameters for Key Measurements During PEM-Tropics A 

Species Technique Limit of Detection Accuracy, % PI a 

NO TP-LIF < 0.4 pptv 13 J. Bradshaw 
NO2 photolysis, TP-LIF 0.5 - 11 pptv 25 - 40 J. Bradshaw 
HNOs mist chamber < 20 pptv 15 - 20 (> 25 pptv) R. Talbot 
particulate NO] filter sampling/ion chromatography 10 pmol/mol 20 R. Talbot 
PAN GC/ECD 1 pptv 20 H. Singh 
J(NO2) t' 47r spectrometer 4- 10 -7 s -• 12 R. Shetter 

TP-LIF, two photon-laser induced fluorescence; GC/ECD, gas chromatography with electron capture detector; pptv, parts per trillion 
by volume. 

aPrincipal Investigator. 
bPhotolysis frequency for NO 2. 

of N Ox between 6 and 12 km surpasses the production rate 
by a factor of 2-3 on average. This imbalance exceeds the 
combined uncertainties in the measurements of NO y species 
(Table 1). In the lower tropical troposphere, by contrast, ther- 
mal decomposition of PAN from biomass burning sources 
acts as a dominant source of N Ox and the N O• budget is 
balanced [Schultz et al., 1999]. 

Figure 2 displays the model-calculated diurnally aver- 
aged ratio of chemical loss to chemical production of N O• 
(LNo•/PNo•) and the NO• lifetime versus altitude. The 
median LNo•/PNo• ratio is fairly constant with altitude 

(median 2.4, interquartile range typically 1.5-3). The NO• 
lifetime increases with altitude from 2 days at 6 km to 10 
days at 12 km. 

If recent injection of primary NOx in convective outflow 
were the major cause of the imbalance of the chemical NO • 
budget, then we would expect the imbalances to be greater 
under conditions of high relative humidity. However, as 
shown in Figure 3, the LNO•/PNo• ratio tends to be largest 
at low relative humidity. One could invoke a scenario where 
injection of lightning NO• in convective downdrafts would 
provide a primary source of N O• associated with low rela- 

Table 2. Median Airmass Composition Over the Tropical South Pacific (0-30øS, 165øE-90øW, 
6-12 km) 

Species All Data Relative Humidity •< 10% 
(N = 158) (N - 33) 

Temperature, K 249 (234-256) 252 (244-260) 
Potential temperature, K 336 (331-342) 335 (331-339) 
relative humidity, % 25 (13-46) 5 (3-7) 
NO, pptv 16 (9-31) 36 (12-60) 
NO•, pptv b 35 (18-63) 77 (22-141) 
HNOa, pptv 48 (23-82) 87 (41-183) 
RN, mol/mol c 1.9 (1.2-3.2) 1.6 (0.8-3.5) 
PAN, pptv 27 (15-64) 47 (15-121) 
Oa, ppbv 33 (28-49) 48 (29-80) 
CO, ppbv 58 (54-65) 69 (54-85) 
C2H2, pptv 36 (27-58) 68 (29-94) 
C2H2/C0, pptv/ppbv 0.6 (0.5-0.8) 1.0 (0.6-1.1) 
H202, pptv 372 (269-592) 322 (209-446) 
CHaOOH, pptv 212 (116-340) 114 (75-199) 
HCOOH, pptv 36 (27-58) 72 (41-133) 
CHaCOOH, pptv 34 (24-68) 54 (24-114) 
CHaI, pptv 0.07 (0.05-0.11) 0.05 (0.04-0.07) 
NH4 +, pmol/mol d LOD (LOD-46) 27 (LOD-46) 
SO42-, pmol/mol d 13 (LOD-22) 16 (LOD-21) 
NO•-, pmol/mol d LOD (LOD-26) LOD (LOD-26) 

PEM-Tropics A DC-8 data. Values in parentheses are interquartile ranges. 
a With respect to ice. 
bNO•= NO + NO2+ NOa+ 2 N205+ HNO2+ HO2NO2; concentrations of species other than NO 

are calculated from the photochemical model (standard simulation). 
C/•N= HNOa/(NO + NO2). NO2from photochemical model. 
dLimit of detection (LOD) = 25 pmol/mol for NH4 + and 10 pmol/mol for SO•- and NO•-. 
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Table 3. Mean (Median) 24-Hour Average Chemical NOx 
Budget in the Upper Troposphere Over the Tropical South 
Pacific 

Reaction Mean (Median) 

NO• Production, pptv d- • 
HNOa+ OH 1.9 (1.2) 
HNOa+ ht2 2.0 (1.5) 
PAN+ ht/ 1.1 (0.7) 
PAN thermolysis 0.4 (< 0.1) 
total production 5.4 (3.6) 

NOz Loss, pptv d- x 
NO2+ OH+ M 11.6 (5.5) 
N205+ H20 (aerosol) 3.4 (1.2) 
NO2+ CH3COO2 + M 2.6 (2.1) 
total loss 17.6 (9.3) 

NO• Budget, ratio 
ZNox/PNOx 2.5 (2.1) 

(NO2+OH+M) and higher (HNO3+OH) than the standard 
recommendations of DeMore et al. [ 1997]. A recent study 
of the N O x/NO u ratio in the lower stratosphere during polar 
summer [Gao et al., 1999] found that using these new rate 
constants improves the simulated NO•/NO u ratio from 0.6 
(with JPL-97 rates) to 0.9 times the observed ratio. For the 
PEM-Tropics A conditions at 6-12 km altitude, the rate con- 
stant for NO2+OH+M is reduced by 20%, while the rate 
constant for HNO3+OH is increased by 50-100% on aver- 
age. The median LNOx/PNo• ratio decreases from 2.4 in 
the base case scenario to 2.2 using the new rate coefficients 
(Table 4). 

Table 3 shows that hydrolysis of N205 in aerosols ac- 
counts on average for 20% of the total NO• loss. Following 
the assumption commonly made in models, we assumed that 
the aerosol is aqueous so that N205 hydrolysis takes place 
[Dentener and Crutzen, 1993; Lamarque et al., 1996; Wang 
et al., 1998b]. McKeen et al. [1997] pointed out that this 

Model results for PEM-Tropics A (run 0, base case), 0-30 ø S, assumption is not necessarily correct, which has significant 
165øE-105øW, 6-12 km altitude, with NO• defined as NO + implications forthe NO• budget. The chemicalcomposition 
NO2+ NOa+ 2 N205+ HNO2+ HO2NO2; PAN formation of the aerosol measured during PEM-Tropics A (Figure 4) 
and loss rates are corrected for internal cycling within the [PAN+ indicates full neutralization of SO]- by NH4 + in 70% of all 
CHaCOO2] family [Jacob et al., 1996]. tropical samples above 6 km (Figure 5a). Laboratory studies 

tive humidity. Such a scenario would imply the sampling of 
recent outflow from very deep convection (cloud top > 12 
km), but kinematic back-trajectories together with infrared 
satellite images from PEM-Tropics A found only few oc- 
curences of these conditions. The lack of an evident dynam- 
ical explanation for the N O• budget imbalance prompts an 
examination of possible chemical factors contributing to the 
imbalance. 

3. Chemical Contributions to the N Budget 
Imbalance 

by Cziczo and Abbatt [1999] for (NH4)2SO4 and Li-Jones 
et al. [ 1999] for mineral dust indicate that neutral aerosols 
would be dry under the upper tropospheric conditions found 
in PEM-Tropics A (median relative humidity 25%, Table 2). 
Cziczo and Abbatt [1999] find that (NH4)2SO4 aerosols at 
temperatures typical of the middle and upper troposphere 
(below 240 K) are dry for relative humidities below 65%, 
even when the energy barrier for efflorescence is taken into 
account. Mozurkevich and Calvert [1988] measured the up- 
take of N2Os on dry (NH4)2SO4 aerosols at 25% relative 
humidity and found it to be negligible (7 < 0.003). 

The finding that aerosols in the upper troposphere over 
the South Pacific are frequently neutralized runs counter to 

Recent laboratory measurements of the temperature- the standard view of a background acid sulfate aerosol in the 
dependent rate constants for the NO2+OH+M reaction remote free troposphere [Gilette and Blifford, 1971; Hue- 
[Brown et al., 1999; DransfieM et al., 1999] andthe HNOa+ bert and Lazrus, 1980; Whelpdale et al., 1987; Dentener and 
OH reaction [Brown et al., 1999] indicate values lower Crutzen, 1993]. Aerosolnitrate concentrations during PEM- 

• ' 5 10 
LNOx/PNOx NO-lifetime [days] 

Figure 2. Vertical profiles of (a) the ratio of 24-hour averaged rates of chemical loss to chemical produc- 
tion of NOx and (b) the chemical lifetime of NO•. Values are results from standard steady state point 
model calculations for the ensemble of data summarized in Figure 1. Circles are medians over 1 km 
altitude bands, stars are means, and the shaded areas span the interquartile ranges from the standard simu- 
lation. The dashed line shows results for a simulation with new rate constants for NO2+ OH+ M [Brown 
et al., 1999; Dransfield et al., 1999] and HNOa+ OH [Brown et al., 1999] and without N2Os hydrolysis. 
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Figure 3. Ratio of chemical loss to production of NOx for 
the data .in Figure 1, plotted versus relative humidity with 
respect to ice. Loss and production rates of N Ox are from 
the standard simulation. Dots represent the individual calcu- 
lations; the line is a smoothed running geometric average. 

terization Experiment (ACE- 1) which indicated 50-100 pptv 
of gaseous NH3 throughout the free troposphere (D. Davis, 
manuscript in preparation, 1999). Gaseous ammonia would 
be titrated if the aerosol were acidic. A neutral aerosol 

would exclude the possibility of fast heterogeneous chemi- 
cal conversion from HNO3 to NO• involving formaldehyde 
on acidic aerosol as proposed by Chatfield [1994] and Fan 
et al. [1994]. A sensitivity run without N205 (and NO3) 
hydrolysis reduces median LNo•/PNo• from 2.2 (run with 
new rate constants) to 1.9 (Table 4). 

The availability of NH4 + in amounts sufficient to neutral- 
ize the aerosol (Figure 4a) implies the possible presence of 
significant amounts of gas-phase NH3, which could provide 
an additional source of NO• via oxidation by OH [e.g., Lo- 
gan, 1983]. According to DeMore et al. [1997], up to 80% 
of the NH2 formed in the oxidation of NH3 by OH would 
react with O3 to form NO•. Thus 100 pptv of NH3 could 
ß provide a NO• source of about 0.75 pptv day -x, which is 
15% of the median chemical N Ox source calculated for the 
PEM-Tropics A conditions (Table 3). There is a need for 
more observations of gas-phase NH3 and for better under- 
standing of the mechanlsm of NH3 oxidation. 

While the use of new rate constants for the reactions of 

NO2 and HNO3 with OH and the possible suppression of 
N205 hydrolysis significantly improve the NO• budget for 

Tropics A (Figure 4c) occasionally exceeded the ammonium PEM-Tropics A (Table 4), a median LNo•/PNo• imbalance 
present in excess of H2804 neutralization (Figure 5b), al- of 1.9 persists, corresponding to a missing NO• source of 
though one would not expect significant HNO3 dissolution 4.3 pptv day -x on average. Since the two factors discussed 
in acid aerosol [Carslaw et al., 1995]. In these cases, neu- here increase the NO• lifetime at 6-12 km by 30% (from 3.2 
tralization of nitrate could possibly be achieved by mineral to 4.3 days; Figure 2), there is more potential for the miss- 
ions (e.g., Ca2 + or K +) as suggested by Tabazadeh et al. 
[1998] for aerosol over the central United States. In PEM- 
Tropics A, mineral ion concentrations were often below the 
detection limit (typically 15 pmol/mol), but if we assume 
concentrations just below the detection limit, they would al- 
ways suffice to neutralize the aerosol. Independent support 
for a fully neutralized aerosol over the South Pacific is of- 
fered by airborne measurements from the Aerosol Charac- 

ing source to be provided by long-range transport of primary 
NO•. However, a gap in our understanding of NOx chem- 
istry in the free troposphere cannot be ruled out. 

4. Previous Studies 

A substantial body of observations for analyzing the chem- 
ical N O• budget in the free troposphere has been presented 

Table 4. Model Sensitivity of LNo•/PNo• and NO• Lifetime in PEM-Tropics A 

Model Run LNo•/PNo• NOz Lifetime, days 

Results from Schultz et al. [1999] a 
Standard simulation with JPL-97 rates t' 
New rate constants c 

New rate constants and no heterogeneous N O• loss 

2.6 (1.7-3.8) 2.8 (1.7-5.6) 
2.4 (1.4-3.5) 3.2 (2.1-5.8) 
2.2 (1.4-3.0) 3.4 (2.2-6.5) 
1.9 (1.2-2.5) 4.1 (2.5-7.7) 

LNo•/PNo• is the ratio of the 24-hour averaged chemical loss rate of NO• (LNo•) to the chemical 
production rate of NO• (PNo•) calculated with a chemical point model constrained by PEM-Tropics 
A aircraft observations over the tropical and substropical South Pacific (0-30øS, 165øE-105øW, 6-12 km 
altitude). Values are medians, values in parantheses give the interquartile range. 

aAerosol surface area estimated from condensation nuclei counts. Median surface area too large 
(24 ]½m 2 cm-3). 

bN205 hydrolysis with 3/= 0.1' water vapor and peroxide concentrations as observed. Aerosol surface 
area = 3/am 2 cm-3. 

CRevised temperature dependent rate constants for NO2+ OH+ M [Dransfield et al., 1999] and HNO3+ 
OH [Brown et al., 1999]. All other parameters as in standard simulation. 
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Figure 4. Vertical profiles of aerosol composition during PEM-Tropics A (0-30øS, 165øE-105øW, 6-12 
km): (a) sulfate, (b) ammonium, (c) nitrate. Open triangles in Figures 4a and 4b denote samples where 
H2804 is fully neutralized by NH3 ([NH• +] > 2[SO•-]). Open squares in Figure 4c denote samples 
where HNO3 titrates the excess NH• + ([NH• +] > 2[SO•-] and [NO•-] > [NH• +] - 2[SO•-]). Plusses 
show data below detection limit (LOD) (set to 1 x LOD for display). Closed symbols represent all other 
points, including those where diagnosis of the NH• +- SO•--NO] balance could not be conducted due to 
concentrations below the detection limit. 

in the literature (Table 5). Most studies report large imbal- 
ances in the N Ox budget. The reliability of the NO mea- 
surements in the experiments listed in Table 5 has been es- 
tablished in formal intercomparisons [Gregory et al., 1990b; 
Crosley, 1996]. Aircraft measurements of NO2 in missions 
prior to PEM-Tropics A had large positive biases [Crawford 
et al., 1996]. However, most model studies in Table 5 did not 
use measured NO2 but instead assumed NO2 to be in photo- 
chemical equilibrium with NO, an assumption supported by 
the NO2 measurements in PEM-Tropics A [Schultz et al., 
1999]. The measurement of HNO3 appears reliable based 
on a recent measurement intercomparison and observed clo- 
sure of the NO v budget [Talbot et al., 1999b]. 

The only previous studies listing average rates of individ- 
ual reactions contributing to their model N Ox budget are 
Fan et al. [1994] for ABLE-3B and Jacob et al. [1996] 
for TRACE-A. The NO• budget imbalance during ABLE- 
3B was small (Table 5). That study extended only to 6 km 
altitude; thermal decomposition of PAN was the dominant 
chemical source of NO•, and N205 hydrolysis was ignored 
because the aerosol was fully neutralized. Therefore the ef- 
fects that we investigated in section 3 would not alter the 
computed NO • budget. In TRACE-A the NO• budget im- 
balance at 4-12 km altitude was large (Table 5). If we sup- 
press N2 O5 hydrolysis and use the revised rate constants for 
NO2+ OH+ M and OH+ HNO3, we find a reduction in 
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Figure 5. Relationships at 6-12 km between (a) aerosol sulfate and ammonium and (b) aerosol nitrate and 
ammonium in excess of sulfate. The dashed line in Figure 5a is the 1'1 line; the solid line is the 2:1 line. 
The solid line in Figure 5b is the 1'1 line. Symbols are the same as in Figure 4. 
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LNo•/PNo• from 3.6 to 2.1 (4-8 km) and from 5.6 to 3.1 
(8-12 km). The large effect is mainly caused by the impor- 
tance of N205 hydrolysis in the Jacob et al. [1996] model 
budget which in turn is due to the high ozone concentrations 
observed in TRACE-A. 

Global three-dimensional (3-D) models which account for 
long-range transport of N Ox from primary sources such 
as lightning and combustion also experience difficulties in 
simulating /tN in the upper troposphere [Brasseur et al., 
1996; Wang et al., 1998a,b; Lawrence and Crutzen, 1998; 
Hauglustaine et al., 1998; Thakur et al., 1999]. These mod- 
els generally achieve a good simulation of N Ox (reflecting, 
however, in part an adjustment of the source from lightning) 
but overestimate HN O3 concentrations by a factor of 2-10 in 

The observation of 50-100 pptv of gas-phase NH3 in the 
free troposphere over the Pacific (D. Davis et al., manuscript 
in preparation, 1999) is inconsistent with global models 
[e.g., Dentener and Crutzen, 1994] and invites speculation 
about a potential N O• source from NH3 oxidation. For 
PEM-Tropics A, we derive an upper limit of 15% of the total 
NOx source from this process. 

If the results from this paper are applied to previous stud- 
ies, reductions of the chemical N O • budget imbalance of up 
to 40% are expected. The new rate constants and the pos- 
sibly suppressed nighttime sink of NO• would bring most 
studies into a LNO•/PNo• range of 2-3. 
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models [Wang et al., 1998b; Tabazadeh et al., 1998]. How- 
ever, during PEM-Tropics A, the NO•-/HNO3 concentration 
ratio was usually < 0.2 (Figure If). Another factor would 
be insufficient precipitation scavenging in the free tropo- 
sphere [Wang et al., 1998b]. Lawrence and Crutzen [1998] 
proposed that gravitational settling of cirrus ice crystals, 
not accounted for in global models, can reduce HNO3 by 
a factor of 10 in the tropical upper troposphere while the 
impact on zonally averaged N O• concentrations typically 
remains < 20%. 

5. Summary and Conclusions 

The chemical N O • budget in the middle and upper tropo- 
sphere over the remote tropical South Pacific during PEM- 
Tropics A was examined with model calculations using con- 
current measurements of NO, HNO3, and PAN as con- 
straints. A standard calculation yields a median factor of 
2.4 excess of chemical loss of NO• (conversion to HNO3 
and PAN) relative to chemical production (recycling from 
HNO3 and PAN), corresponding to a missing NO• source 
of about 12 pptv day -x. This imbalance is reduced by 10% 

References 

Atkinson R., D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, 
M. J. Rossi, and J. Troe, Evaluated kinetic and photochemical 
data for atmospheric chemistry - Supplement VI, J. Phys. Chem. 
Ref Data, 26(6), 1329-1499, 1997. 

Bradshaw, J. D., M. O. Rodgers, S. T. Sandholm, S. KeSheng, and 
D. D. Davis, A two-photon laser-induced fluorescence field in- 
strument for ground-based and airborne measurements of atmo- 
spheric NO, J. Geophys. Res., 90(D7), 12,861-12,873, 1985. 

Brasseur, G. P., D. A. Hauglustaine, and S. Walters, Chemical com- 
pounds in the remote Pacific troposphere: comparison between 
MLOPEX measurements and chemical transport model calcula- 
tions, J. Geophys. Res., 101(D9), 14,795-14,813, 1996. 

Brown, S.S., T. Gierczak, R. W. Portmann, R. K. Talukdar, J. B. 
Burkholder, and A.R. Ravishankara, Role of nitrogen oxides in 
the lower stratosphere: A reevaluation based on laboratory stud- 
ies, Geophys. Res. Lett., , 26, 2387-2390, 1999. 

Carslaw, K. S., S. L. Clegg, and P. Brimblecombe, A thermody- 
namic model of the system HC1-HNOa-H2SO4-H2Oincluding 
solubilities of HBr, from <200 to 328 K, J. Phys. Chem., 99, 
11,557-11,574, 1995. 

Chatfield, R. B., Anomalous HNOa/NO• ratio of remote tropo- 
spheric air: Conversion of nitric acid to formic acid and NOs ?, 
Geophys. Res. Lett., 21, 2705-2708, 1994. 

when the recently remeasured temperature- and pressure- Clarke, A.D., F. Eisele, V. N. Kapustin, K. Moore, R. Tanner, L. 
dependent reaction rate constants for OH+ NO2+ M 
[Brown et al., 1999; Dransfield et al., 1999] and OH+ 
HNO3 [Brown et al., 1999] are incorporated in the chem- 
ical mechanism. 

The bulk aerosol chemical composition measured in PEM- 

Mauldin, M. Litchy, B. Lienert, M. A. Carroll, and G. Alber- 
cook, Nucleation in the equatorial free troposphere: Favorable 
environments during PEM-Tropics, J. Geophys. Res., 104(D5), 
5735-5744, 1999. 

Crawford, J., et al., Photostationary state analysis of the NO2-NO 
system based on airborne observations from the western and cen- 

Tropics A at 6-12 km altitude indicates in most cases total tral north Pacific, J. Geophys. Res., 101, 2053-2072, 1996. 
H2SO4 neutralization by NH3. This observation, combined Crawford, J. H., et al., Implications of large scale shifts in tropo- 

spheric NO• levels in the remote tropical Pacific, J. Geophys. 
with the low relative humidities measured in PEM-Tropics Res., 102(D23), 28,447-28,468, 1997. 
A (median 25% relative to ice), suggests that the aerosol Crosley, D. R., The NOv blue ribbon panel, J. Geophys. Res., 
should be present in the solid phase. Suppression of N205 101(D1), 2049-2052, 1996. 
hydrolysis in the model improves the chemical NOx budget Cziczo, D. J., and J.P. D. Abbatt, Deliquescence, effluorescence 
imbalance in PEM-Tropics A by another 15% Further study and supercooling of ammonium sulfate aerosols at low temper- 

' ature: Implications for cirrus cloud formation and aerosol phase 
of the composition and phase of free tropospheric aerosols is in the atmosphere, J. Geophys. Res., 104(D 11), 13,781-13,790, 
evidently needed. 1999. 



6678 SCHULTZ ET AL.: NO• BUDGET IN TROPICAL UPPER TROPOSPHERE 

Davis, D. D., et al., Assessment of ozone photochemistry in the 
western North Pacific as inferred from PEM-West A observa- 

tions during the fall 1991, J. Geophys. Res., 101 (D1), 2111- 
2134, 1996. 

DeMore, W. B., S. P. Sander, D. M. Golden, R. F. Hampson, M. J. 
Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. 
J. Molina, Chemical kinetics and photochemical data for use in 
stratospheric modeling, JPL Pub., 97-4, 1997. 

Dentener, F. J., and P. J. Crutzen, Reaction of N205 on tropo- 
spheric aerosols: Impact on the global distributions of NO•, O3, 
and OH, J. Geophys. Res., 98(D4), 7149-7162, 1993. 

Dentener, F. J., and P. J. Crutzen, A three-dimensional model of the 
global ammonia cycle, J. Atmos. Chern., 19, 331-369, 1994. 

Dibb, J. E., R. W. Talbot, E. M. Scheuer, D. R. Blake, N.J. Blake, 
G. L. Gregory, G. W. Sachse, and D.C. Thornton, Aerosol chem- 
ical composition and distribution during the Pacific Exploratory 
Mission - Tropics, J. Geophys. Res., 104(D5), 5785-5800, 1999. 

Dransfield, T. J., K. K. Perkins, N.M. Donahue, J. G. Anderson, M. 
M. Sprengnether, and K.L. Demerjian, Temperature and pressure 
dependent kinetics of the gas-phase reaction of the hydroxyl rad- 
ical with nitrogen dioxide, Geophys. Res. Lett., 26(6), 687-690, 
1999. 

Fan, S.-M., D. J. Jacob, D. L. Mauzerall, J. D. Bradshaw, S. T. 
Sandholm, D. R. Blake, H.B. Singh, R. W. Talbot, G. L. Gregory, 
and G. W. Sachse, Origin of tropospheric NO• over subarctic 
eastern Canda in summer, J. Geophys. Res., 99(D8), 16,867- 
16,877, 1994. 

Gao, R. S., et al., A comparison of observations and model sim- 
ulations of NO,/NOv in the lower stratosphere, Geophys. Res. 
Lett., 26(8), 1153-1156, 1999. 

Gierczak, T., J. B. Burkholder, S. Bauerle, and A. R. Ravishankara, 
Photochemistry of acetone under tropospheric conditions, J. 
Chern. Phys., 231(2-3), 229-244, 1998. 

Gillette, D. A., and I. H. Blifford Jr., Composition of tropospheric 
aerosols as a function of altitude, J. Atrnos. Sci., 28, 1199-1210, 
1971. 

Gregory, G. L., J. H. Hoell, B. A. Ridley, H. B. Singh, B. Gandrud, 
L. J. Salas, and J. Shetter, An intercomparison of airborne PAN 
measurements, J. Geophys. Res., 95(D7), 10,077-10,087, 1990a. 

Gregory, G. L., J. M. Hoell Jr., A. L. Torres, M. A. Carroll, B. 
A. Ridley, M. O. Rodgers, J. Bradshaw, S. Sandholm, and D. 
D. Davis, An intercomparison of airborne nitric oxide measure- 
ments: A second opportunity, J. Geophys. Res., 95(D7), 10,129- 
10,138, 1990b. 

Hauglustaine, D. A., B. A. Ridley, S. Solomon, P. G. Hess, and S. 
Madronich, HNOa/NO• ratio in the remote troposphere during 
MLOPEX 2: Evidence for nitric acid reduction on carbonaceous 

aerosols, Geophys. Res. Lett., 23(19), 2609-2612, 1996. 
Hauglustaine, D. A., G. P. Brasseur, S. Walters, P. J. Rasch, J. F. 

Mfiller, L. K. Emmons, and M. A. Carroll, MOZART, a global 
chemical transport model for ozone and related chemical tracers, 
2: Model results and evaluation, J. Geophys. Res., 103(D21), 
28,291-28,335, 1998. 

Hoell, J. M., D. D. Davis, D. J. Jacob, M. O. Rodgers, R. E. Newell, 
H. E. Fuelberg, R. J. McNeal, J. L. Raper, and R. J. Bendura, 
The Pacific Exploratory Mission in the Tropical Pacific: PEM- 
Tropics A, August-September 1996, J. Geophys. Res., 104(D5), 
5567-5584, 1999. 

Jaeg16, L., D. J. Jacob, Y. Wang, A. J. Weinheimer, B. A. Ridley, T. 
L. Campos, G. W. Sachse, and D. Hagen, Sources and chemistry 
of NO• in the upper troposphere over the central United States, 
Geophys. Res. Lett., 25(10), 1705-1708, 1998. 

Kawakami, S., et al., Impact of lightning and convection on reac- 
tive nitrogen in the tropical free troposphere, J. Geophys. Res., 
102(D23), 28,367-28,384, 1997. 

Kondo, Y., M. Koike, S. Kawakami, H. B. Singh, H. Nakajima, 
G. L. Gregory, D. R. Blake, G. W. Sachse, J. T. Merrill, and 
R. E. Newell, Profiles and partitioning of reactive nitrogen over 
the Pacific ocean in winter and early spring, J. Geophys. Res., 
102(D23), 28,405-28,424, 1997. 

Lamarque, J.-F., G. P. Brasseur, P. G. Hess, and J.-F. Mfiller, Three- 
dimensional study of the relative contributions of the different 
nitrogen sources in the troposphere, J. Geophys. Res., 1 O1 (D 17), 
22,955-22,968, 1996. 

Lary, D. J., A.M. Lee, R. Toumi, M. J. Newchurch, M. Pirre, and 
J. B. Renard, Carbon aerosols and atmospheric photochemistry, 
J. Geophys. Res., 102(D3), 3671-3682, 1997. 

Lawrence, M. G., and P. J. Crutzen, The impact of cloud particle 
gravitational settling on soluble trace gas distributions, Tellus, 
Ser. B, 50(3), 263-289, 1998. 

Li-Jones, X., H. B. Maring, and J. M. Prospero, Effect of relative 
humidity on light-scattering by mineral dust aerosol as measured 
in the marine boundary layer over the tropical Atlantic ocean, J. 
Geophys. Res., 103(D23), 31,113-31,121, 1998. 

Liu, S. C., et al., A study of the photochemistry and ozone budget 
during the Mauna Loa Observatory Photochemistry Experiment, 
J. Geophys. Res., 97(D10), 10,463-10,471, 1992. 

Liu, S.C., et al., Model study of tropospheric trace species distri- 
butions during PEM-West A,J. Geophys. Res., 101(D1), 2073- 
2086, 1996. 

Logan, J. A., Nitrogen-oxides in the troposphere: Global and re- 
gional budgets, J. Geophys. Res., 88(C15), 785-807, 1983. 

McKeen, S. A., T. Gierczak, J. B. Burkholder, P.O. Wennberg, T. F. 
Hanisco, E. R. Keim, R.-S. Gao, S. C. Liu, A. R. Ravishankara, 
and D. W Fahey, The photochemistry of acetone in the upper 
troposphere: A source of odd-hydrogen radicals, Geophys. Res. 
Lett., 24(24), 3177-3180, 1997. 

Mozurkewich, M., and J. G. Calvert, Reaction probability of 
on aqueous aerosols, J. Geophys. Res., 93(D12), 15,889-15,896, 
1988. 

Prather, M. J., and D. J. Jacob, A persistent imbalance in HO • and 
N O• photochemistry of the upper troposphere driven by deep 
tropical convection, Geophys. Res. Lett., 24(24), 3189-3192, 
1997. 

Sandholm, S. T., J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, 
and D. D. Davis, An airborne compatible photofragmentation 
two-photon laser-induced fluorescence instrument for measuring 
background tropospheric levels of NO, NO•, and NO2, J. Geo- 
phys. Res., 95(D7), 10,155-10,161, 1990. 

Sandholm, S., et al., Summertime partitioning and budget of NOv 
compounds in the troposphere over Alaska and Canada: ABLE 
3B, J. Geophys. Res., 99(D1), 1837-1861, 1994. 

Sandholm, S., S. Smyth, R. Bai, and J. Bradshaw, Recent and 
future improvements in two-photon laser-induced-fluorescence 
NO measurement capabilities, J. Geophys. Res., 102(D23), 
28,651-28,663, 1997. 

Huebert, B. J., and A. L. Lazrus, Bulk composition of aerosols in Schultz, M., R. Schmitt, K. Thomas, and A. Volz-Thomas, Pho- 
the remote atmosphere, J. Geophys. Res., 85, 7337-7344, 1980. tochemical box modeling of long-range transport from North 

Jacob, D. J., Heterogeneous chemistry and tropospheric ozone, At- America to Tenerife during the North Atlantic Regional Ex- 
rnos. Environ., in press 1999. periment (NARE) 1993, J. Geophys. Res., 103(D11), 13,477- 

Jacob, D. J., et al., Summertime photochemistry of the troposphere 13,488, 1998. ' 
at high northern latitudes, J. Geophys. Res., 97(D15), 16,421- Schultz, M. G., et al., On the origin of tropospheric ozone and NO• 
16,431, 1992. over the tropical South Pacific, J. Geophys. Res., 104(D5), 5829- 

Jacob, D. J., et al., Origin of ozone and NO• in the tropical tropo- 5844, 1999. 
sphere: A photochemical analysis of aircraft observations over Singh, H. B., and L. J. Salas, Methodology for the analysis of 
the South Atlantic basin, J. Geophys. Res., 101(D19), 24,235- peroxyacetylnitrate (PAN) in the unpolluted atmosphere, Atmos. 
24,250, 1996. Environ., 17, 1507-1516, 1983. 



SCHULTZ ET AL.: NO, BUDGET IN TROPICAL UPPER TROPOSPHERE 6679 

Singh, H. B., M. Kanakidou, P. J. Crutzen, and D. J. Jacob, High 
concentrations and photochemical fate of oxygenated hydrocar- 
bons in the global troposphere, Nature, 378, 50-54, 1995. 

Singh, H. B., et al., Reactive nitrogen and ozone over the westem 
Pacific: Distribution, paritioning, and sources, J. Geophys. Res., 
101(D1), 1793-1808, 1996a. 

Singh, H. B., et al., Impact of biomass buming emissions on the 
composition of the South Atlantic troposphere: Reactive nitro- 
gen and ozone, J. Geophys. Res., 101(D19), 24,203-24,220, 
1996b. 

S ingh, H. B., et al., Latitudinal distribution of reactive nitrogen in 
the free troposphere over the Pacific ocean in late winter early 
spring, J. Geophys. Res., 103(D21), 28,237-28,246, 1998. 

Smyth, S. B., et al., Factors influencing the upper free tropospheric 
distribution of reactive nitrogen over the South Atlantic during 
the TRACE-A experiment, J. Geophys. Res., 1 O1 (D 19), 24,165- 
24,186, 1996. 

Tabazadeh, A., M. Z. Jacobson, H. B. Singh, O. B. Toon, J. S. Lin, 
R. B. Chatfield, A. N. Thakur, R. W. Talbot, and J. E. Dibb, Nitric 
acid scavenging by mineral and biomass aerosols, Geophys. Res. 
Lett.,25(22), 4185-4188, 1998. 

Talbot, R. W., K. M. Beecher, R. C. Hariss, and W. R. Cofer III, 
Atmospheric geochemistry of formic and acedic acids at a mid- 
latitude temperate site, J. Geophys. Res., 93(D2), 1638-1652, 
1988. 

Talbot, R. W., A. S. Vijgen, and R. C. Harriss, Measuring tro- 
pospheric HNOa: Problems and prospects for nylon filter and 
mist chamber techniques, J. Geophys. Res., 95(D6), 7553-7561, 
1990. 

Talbot, R. W., et al., Large-scale distributions of tropospheric nitric, 
formic, and acetic acids over the western Pacific basin during 
wintertime, J. Geophys. Res., 102(D23), 28,303-28,313, 1997. 

Talbot, R. W., J. E. Dibb, E. M. Scheuer, D. R. Blake, N.J. Blake, 
G. L. Gregory, G. W. Sachse, J. D. Bradshaw, S. T. Sandholm, 
and H. B. S ingh, Influence of biomass combustion emissions 
on the distribution of acidic trace gases over the southern Pa- 
cific basin during austral springtime, J. Geophys. Res., 104(D5), 
5623-5634, 1999a. 

Talbot, R. W., et al., Reactive nitrogen budget during the NASA 
SONEX mission, Geophys. Res. Lett., 26(20), 3057-3060, 
1999b. 

Thakur, A. N., H. B. Singh, P. Mariani, Y. Chen, Y. Wang, D. J. 
Jacob, G. Brasseur, J. F. Miiller, and M. Lawrence, Distribution 
of reactive nitrogen species in the remote free troposphere: Data 
and model comparisons, Atrnos. Environ., 33(9), 1403-1422, 
1999. 

Wang, Y., D. J. Jacob, and J. A. Logan, Global simulation of tropo- 
spheric Oa-N O,-hydrocarbon chemistry: 1. Model formulation, 
J. Geophys. Res., 103(D9), 10,713-10,726, 1998a. 

Wang, Y., J. A. Logan, and D. J. Jacob, Global simulation of tropo- 
spheric Oa-NO,-hydrocarbon chemistry: 2. Model evaluation 
and global ozone budget, J. Geophys. Res., 103(D9), 10,727- 
10,756, 1998b. 

Whelpdale, D. M., W. C. Keene, A.D. A. Hanssen, and J. Boatman, 
Aircraft measurements of sulfur, nitrogen, and carbon species 
during WATOX-86, Global Biogeochern. Cycles, 1, 357-368, 
1987. 

J. E. Dibb and R. W. Talbot, Institute for the Study of Earth, 
Oceans, and Space, University of New Hampshire, Durham, NH 
03824. 

D. J. Jacob, Division of Engineering and Applied Sciences and 
Department of Earth and Planetary Sciences, Harvard University, 
29 Oxford St., Cambridge, MA 02139. (djj@io.harvard.edu) 

S. T. Sandholm, School of Earth and Atmospheric Sciences, 
Georgia Institute of Technology, Atlanta, GA 30332. 

M. G. Schultz, Max-Planck-Institut far Meteorologie, Bundesstr. 
55, 20146 Hamburg, Germany. (martin.schultz@dkrz.de) 

H. B. Singh, NASA Ames Research Center, Moffett Field, CA 
94035. 

(Received January 22, 1999; revised September 16, 1999; 
accepted September 23, 1999.) 


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	3-2000

	Chemical NOx budget in the upper troposphere over the tropical South Pacific
	Martin G. Schultz
	Daniel J. Jacob
	J D. Bradshaw
	S T. Sandholm
	Jack E. Dibb
	See next page for additional authors
	Recommended Citation
	Authors


	Chemical NO x  budget in the upper troposphere over the tropical South Pacific

