511 research outputs found
On Energy Reduction and Green Networking Enhancement due to In-Network Caching
In-network caching in information centric networking
(ICN) is considered as a promising approach to reducing
energy consumption of an entire network. However, it is also considered as an energy consuming technique. These contradictory claims lead to one research question: Does caching really reduce the energy consumption of the entire network? To answer the question, we formulate an ICN network as an optimization problem with a realistic energy consumption model for an ICN router. By solving the formulation assuming that ICN forwarding software currently under development is used as a forwarding engine of an ICN router, we reveal that in-network
caching alone does not reduce much energy but it enhances a currently developed green networking technique even though the forwarding engine is not fully optimized
On Energy Reduction and Green Networking Enhancement due to In-Network Caching
In-network caching in information centric networking
(ICN) is considered as a promising approach to reducing
energy consumption of an entire network. However, it is also considered as an energy consuming technique. These contradictory claims lead to one research question: Does caching really reduce the energy consumption of the entire network? To answer the question, we formulate an ICN network as an optimization problem with a realistic energy consumption model for an ICN router. By solving the formulation assuming that ICN forwarding software currently under development is used as a forwarding engine of an ICN router, we reveal that in-network
caching alone does not reduce much energy but it enhances a currently developed green networking technique even though the forwarding engine is not fully optimized
Power Consumption Model of NDN-Based Multicore Software Router Based on Detailed Protocol Analysis
Named data networking (NDN) has received considerable attention recently, mainly due to its built-in caching, which is expected to enable widespread and transparent operator-controlled caching. One of the important research challenges is to reduce the amount of power consumed by NDN networks as it has been shown that NDN's name prefix matching and caching are power-hungry. As a first step to achieving power-efficient NDN networks, in this paper, we develop a power consumption model of a multicore software NDN router. By applying this model to analyze how caching reduces power, we report that caching can reduce power consumption of an NDN network if the power consumption of routers is in proportion to their load and the computation of caching is as light as that of forwarding
Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C
Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at
−
2
V
, stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with
>
36
dB
optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is
−
146
dBc
/
Hz
. Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications.Royal Academy of Engineering (RF201617/16/28); Engineering and Physical Sciences Research Council (EP/R041792/1, EP/T01394X/1)
Requirements for physician competencies in allergy: key clinical competencies appropriate for the care of patients with allergic or immunologic diseases
Egypt J Pediatr Allergy Immunol 2009; 7(1): 33-3
Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20 °C and 120 °C
Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at −2 V
, stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with >36 dB
optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is −146 dBc/Hz
. Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications
Precision Top-Quark Mass Measurements at CDF
We present a precision measurement of the top-quark mass using the full
sample of Tevatron TeV proton-antiproton collisions collected
by the CDF II detector, corresponding to an integrated luminosity of 8.7
. Using a sample of candidate events decaying into the
lepton+jets channel, we obtain distributions of the top-quark masses and the
invariant mass of two jets from the boson decays from data. We then compare
these distributions to templates derived from signal and background samples to
extract the top-quark mass and the energy scale of the calorimeter jets with
{\it in situ} calibration. The likelihood fit of the templates from signal and
background events to the data yields the single most-precise measurement of the
top-quark mass, \mtop = 172.85 \pm\pmComment: submitted to Phys. Rev. Let
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
Intraluminal migration of a spacer with small bowel obstruction: a case report of rare complication
The spacer placement is a prevalent procedure to separate the surrounding normal tissues from locally recurrent rectal tumor before the application of radiotherapy. However, complications could occur due to the foreign nature of the spacer. This report describes a case of 60-year-old man who had undergone radiotherapy two years earlier for a recurrent rectal tumor and presented with small bowel obstruction. A spacer was used before radiotherapy. Radiological assessment and laparotomy revealed the presence of the spacer inside the small bowel lumen. It is possible that the spacer established contact with the intestine, elicited local inflammatory reaction that facilitated the complete penetration of the intestinal wall without causing any clinical symptoms
- …