136 research outputs found

    Model calculations of the proximity effect in finite multilayers

    Full text link
    The proximity-effect theory developed by Takahashi and Tachiki for infinite multilayers is applied to multilayer systems with a finite number of layers in the growth direction. The purpose is to investigate why previous applications to infinite multilayers fail to describe the measured data satisfactorily. Surface superconductivity may appear, depending on the thickness of the covering normal metallic N layers on both the top and the bottom. The parameters used are characteristic for V/Ag and Nb/Pd systems. The nucleation process is studied as a function of the system parameters.Comment: 12 pages, 15 figures, RevTe

    Ginzburg-Landau theory of vortices in a multi-gap superconductor

    Full text link
    The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then, applied to investigate various magnetic properties of MgB2 including an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated vortex. Orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel to the c-axis. A peculiar 30-degree rotation of the vortex lattice with increasing strength of an applied field observed by neutron scattering is attributed to the multi-gap nature of superconductivity in MgB2.Comment: 11 page

    Vortex structure in dd-wave superconductors

    Full text link
    Vortex structure of pure dx2−y2d_{x^2-y^2}-wave superconductors is microscopically analyzed in the framework of the quasi-classical Eilenberger equations. Selfconsistent solution for the dd-wave pair potential is obtained for the first time in the case of an isolated vortex. The vortex core structure, i.e., the pair potential, the supercurrent and the magnetic field, is found to be fourfold symmetric even in the case that the mixing of ss-wave component is absent. The detailed temperature dependences of these quantities are calculated. The fourfold symmetry becomes clear when temperature is decreased. The local density of states is calculated for the selfconsistently obtained pair potential. From the results, we discuss the flow trajectory of the quasiparticles around a vortex, which is characteristic in the dx2−y2d_{x^2-y^2}-wave superconductors. The experimental relevance of our results to high temperature superconductors is also given.Comment: 22 pages, RevTex, 23 figures available upon reques

    Isotope Effect in the Presence of Magnetic and Nonmagnetic Impurities

    Full text link
    The effect of impurities on the isotope coefficient is studied theoretically in the framework of Abrikosov-Gor'kov approach generalized to account for both potential and spin-flip scattering in anisotropic superconductors. An expression for the isotope coefficient as a function of the critical temperature is obtained for a superconductor with an arbitrary contribution of spin-flip processes to the total scattering rate and an arbitrary degree of anisotropy of the superconducting order parameter, ranging from isotropic s-wave to d-wave and including anisotropic s-wave and mixed (s+d)-wave as particular cases. It is found that both magnetic and nonmagnetic impurities enhance the isotope coefficient, the enhancement due to magnetic impurities being generally greater than that due to nonmagnetic impurities. From the analysis of the experimental results on La-Sr-Cu-M-O high temperature superconductor, it is concluded that the symmetry of the pairing state in this system differs from a pure d-wave.Comment: 4 pages, 3 figure

    Topological phase-fluctuations, amplitude fluctuations, and criticality in extreme type-II superconductors

    Full text link
    We study the effect of critical fluctuations on the (B,T)(B,T) phase diagram in extreme type-II superconductors in zero and finite magnetic field using large-scale Monte Carlo simulations on the Ginzburg-Landau model in a frozen gauge approximation. We show that a vortex-loop unbinding gives a correct picture of the zero field superconducting-normal transition even in the presence of amplitude fluctuations, which are far from being critical at TcT_c. We extract critical exponents of the dual model by studying the topological excitations of the original model. From the vortex-loop distribution function we extract the anomalous dimension of the dual field η≃−0.18\eta \simeq -0.18, and conclude that the charged Ginzburg-Landau model and the neutral 3DXY model belong to different universality classes. We find are two distinct scaling regimes for the vortex-line lattice melting line: a high-field scaling regime and a distinct low-field 3DXY critical scaling regime. We also find indications of an abrupt change in the connectivity of the vortex-tangle in the vortex liquid along a line TL≥TMT_L \geq T_M. This is the finite field counter-part of the zero-field vortex-loop blowout. Which at low enough fields appears to coincide with TMT_M. Here, a description of the vortex system only in terms of field induced vortex lines is inadequate at and above the VLL melting temperature.Comment: 30 pages, 14 figure

    The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis

    Get PDF
    The chromosome passenger complex (CPC) is a master regulator of mitosis. INCENP acts as a scaffold regulating CPC localisation and activity. During early mitosis the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN-box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled-coil domain acting as a spacer between the N and C terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ~32 nm long single alpha helical (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ~80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible dog-leash allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the stable chromatin of the inner centromere. Furthermore, by achieving this flexibility via a SAH domain, the CPC avoids a need for dimerization (required for coiled-coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation

    G-quadruplex structures mark human regulatory chromatin

    Get PDF
    G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5' UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC\textit{MYC}. Strikingly, de novo\textit{de novo} and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor-induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.European Molecular Biology Organization (EMBO Long-Term Fellowship), University of Cambridge, Cancer Research UK (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z

    Basal-Plane Magnetic Anisotropies of High-kappa d-Wave Superconductors in a Mixed State: A Quasiclassical Approach

    Full text link
    We study the basal-plane anisotropies of reversible magnetization and torque in a mixed state of layered d-wave superconductors based on the quasiclassical version of the BCS-Gor'kov theory. Both the longitudinal magnetization (MLM_L) and torque (τ\tau) show fourfold oscillations as a function of the field angle χ\chi. The relationship between the node position and the oscillatory patterns shown by MLM_L and τ\tau is clarified. It is also shown that the sign of the τ(χ)\tau (\chi)-oscillation does not change between Hc1H_{c1} and Hc2H_{c2}, while the sign of the ML(χ)M_L (\chi)-oscillation changes. The newly obtained result for τ\tau indicates that the torque experiment can allow us to detect the in-plane anisotropies of Hc2H_{c2} even in a material with strong fluctuations such as cuprate or organic superconductors, where the Hc2H_{c2} itself cannot be determined experimentally.Comment: 10 pages, 9 figure

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    • …
    corecore