71 research outputs found

    Bipolar localization of putative photoreceptor protein for phototaxis in thermophilic cyanobacterium Synechococcus elongatus

    Get PDF
    Funding Information: This work was supported in part by Grants-in-Aid for scientific research from the Ministry of Education, Science, Sports and Culture, Japan (no. 11640653 to K.M.).We identified an open reading frame from a database of the entire genome of Synechococcus elongatus, the product of which was very similar to pixJ1, which was proposed as photoreceptor gene for phototaxis in Synechocystis sp. PCC6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The mRNA of S. elongatus pixJ (SepixJ) was expressed in vivo as a part of the product of an operon. SePixJ was detected exclusively in the membrane fraction after cell fractionation. Immunogold labeling of SePixJ in ultra-thin sections indicated that it existed only in both ends of the rod-shaped cell; probably bound with the cytoplasmic membrane.publishersversionPeer reviewe

    CyanoBase: the cyanobacteria genome database update 2010

    Get PDF
    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly

    The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. <it>Azorhizobium caulinodans </it>ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with <it>Sesbania rostrata</it>. The host is a fast-growing, submergence-tolerant tropical legume on which <it>A. caulinodans </it>can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem.</p> <p>Results</p> <p>The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for <it>A. caulinodans</it>. Phylogenetic analyses show that the diazotroph <it>Xanthobacter autotrophicus </it>is the closest relative among the sequenced genomes, but the synteny between both genomes is very poor.</p> <p>Conclusion</p> <p>The genome analysis reveals that <it>A. caulinodans </it>is a diazotroph that acquired the capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island. The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These combined features and the availability of the annotated genome make <it>A. caulinodans </it>an attractive organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.</p

    Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843

    Get PDF
    The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome

    A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus

    Get PDF
    Neutral/alkaline invertases are a subgroup, confined to plants and cyanobacteria, of a diverse family of enzymes. A family of seven closely-related genes, LjINV1–LjINV7, is described here and their expression in the model legume, Lotus japonicus, is examined. LjINV1 previously identified as encoding a nodule-enhanced isoform is the predominant isoform present in all parts of the plant. Mutants for two isoforms, LjINV1 and LjINV2, were isolated using TILLING. A premature stop codon allele of LjINV2 had no effect on enzyme activity nor did it show a visible phenotype. For LjINV1, premature stop codon and missense mutations were obtained and the phenotype of the mutants examined. Recovery of homozygous mutants was problematic, but their phenotype showed a severe reduction in growth of the root and the shoot, a change in cellular development, and impaired flowering. The cellular organization of both roots and leaves was altered; leaves were smaller and thicker with extra layers of cells and roots showed an extended and broader zone of cell division. Moreover, anthers contained no pollen. Both heterozygotes and homozygous mutants showed decreased amounts of enzyme activity in nodules and shoot tips. Shoot tips also contained up to a 9-fold increased level of sucrose. However, mutants were capable of forming functional root nodules. LjINV1 is therefore crucial to whole plant development, but is clearly not essential for nodule formation or function

    Center for Plant Sciences : Research activity annual report 2022

    Get PDF
    地球上には、多様な種の植物が存在し、光合成を中心とする物質生産を行っている。植物科学研究センターでは、植物のもつ多様性とその物質生産能力に着目し、その能力をゲノム解析、分子生物学的解析、生化学的解析などの手法を駆使して明らかにしている。また、多様な植物の能力を最大限に利用して利用価値の高い農作物を育種するための技術開発を行うとともに、それらを利用して持続可能な社会の実現にむけた取り組みを行っている。本報告では、令和4 年度における植物科学研究センターの研究成果について概説する。departmental bulletin pape

    Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids
    corecore