27 research outputs found

    Dysregulated apoptosis and NFκB expression in COPD subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The abnormal regulation of neutrophil apoptosis may contribute to the ineffective resolution of inflammation in chronic lung diseases. Multiple signalling pathways are implicated in regulating granulocyte apoptosis, in particular, NFκB (nuclear factor-kappa B) signalling which delays constitutive neutrophil apoptosis. Although some studies have suggested a dysregulation in the apoptosis of airway cells in chronic obstructive pulmonary disease (COPD), no studies to date have directly investigated if NFκB is associated with apoptosis of airway neutrophils from COPD patients. The objectives of this study were to examine spontaneous neutrophil apoptosis in stable COPD subjects (n = 13), healthy smoking controls (n = 9) and non-smoking controls (n = 9) and to investigate whether the neutrophil apoptotic process in inflammatory conditions is associated with NFκB activation.</p> <p>Methods</p> <p>Analysis of apoptosis in induced sputum was carried out by 3 methods; light microscopy, Annexin V/Propidium iodide and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. Activation of NFκB was assessed using a flow cytometric method and the phosphorylation state of IκBα was carried out using the Bio-Rad Bio-Plex phosphoprotein IκBα assay.</p> <p>Results</p> <p>Flow cytometric analysis showed a significant reduction in the percentage of sputum neutrophils undergoing spontaneous apoptosis in healthy smokers and subjects with COPD compared to non-smokers (p < 0.001). Similar findings were demonstrated using the Tunel assay and in the morphological identification of apoptotic neutrophils. A significant increase was observed in the expression of both the p50 (p = 0.006) and p65 (p = 0.006) subunits of NFκB in neutrophils from COPD subjects compared to non-smokers.</p> <p>Conclusion</p> <p>These results demonstrate that apoptosis is reduced in the sputum of COPD subjects and in healthy control smokers and may be regulated by an associated activation of NFκB.</p

    The role of leukocyte-stromal interactions in chronic inflammatory joint disease

    Get PDF
    Rheumatoid arthritis (RA) is a debilitating, chronic, persistent inflammatory disease that is characterised by painful and swollen joints. The aetiology of RA is unknown, however whereas past research has concentrated on the role of immune or inflammatory infiltrating cells in inflammation, it is becoming clear that stromal cells play a critical part in regulating the quality and duration of an inflammatory response. In this review we assess the role of fibroblasts within the inflamed synovium in modulating immune responses; in particular we examine the role of stromal cells in the switch from resolving to persistent inflammation as is found in the rheumatoid synovium

    Liver- and Lobe-Specific Gene Transfer Following the Continuous Microinstillation of Plasmid DNA onto the Liver Surface in Mice: Effect of Instillation Speed

    Get PDF
    Development of technology to deliver foreign gene(s) to a specific organ/tissue is one of the major challenges in gene therapy. Here, we show liver- and lobe-specific gene transfer following the continuous microinstillation of plasmid DNA (pDNA) onto the liver surface in mice. Naked pDNA was continuously instilled onto the right medial liver lobe using syringe pump in male ddY mice. Our previous studies showed liver- and lobe-selective gene expression after instillation of 30m l of pDNA solution onto the liver surface, but gene expression was also found in the other liver lobe, kidney and spleen. To improve target site selectivity of gene expression, the instillation volume was decreased; however, non-specific gene expression in the other liver lobe and diaphragm was still detected. To prevent immediate diffusion of the pDNA solution, we performed continuous microinstillation of pDNA using a syringe pump; as a result, target site selectivity was greatly improved. As for instillation speed, 5 min infusion was enough to prevent diffusion of pDNA solution. Furthermore, transfection efficiency in the target site was maintained when instillation speed was slowed. Wiping off residual pDNA solution from the applied liver lobe resulted in a further improvement in selectivity, suggesting not only immediate diffusion, but also gradual diffusion, are important factors for successful target site-specific gene transfer. Information in this study will be useful for further development of an effective gene delivery system targeted to a specific organ/tissue by use of other non-viral or viral vectors
    corecore