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Abstract
Rheumatoid arthritis (RA) is a debilitating, chronic, persistent inflammatory disease that is
characterised by painful and swollen joints. The aetiology of RA is unknown, however whereas
past research has concentrated on the role of immune or inflammatory infiltrating cells in
inflammation, it is becoming clear that stromal cells play a critical part in regulating the quality
and duration of an inflammatory response. In this review we assess the role of fibroblasts within
the inflamed synovium in modulating immune responses; in particular we examine the role of
stromal cells in the switch from resolving to persistent inflammation as is found in the rheumatoid
synovium.
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1. Introduction
Inflammation is a complex process in which leukocytes are recruited to tissue in response to
injury or invading pathogens. In many cases the inflammatory response is terminated when
the causative agent is eliminated. In situations where this is not the case, the response
becomes persistent, often leading to sustained tissue damage.

Previously, the main function attributed to resident stromal cells in the inflammatory
response was the provision of extracellular matrix to aid tissue repair; stromal cells were not
thought to be major contributors to the immune system [1]. However, increasing evidence
has shown that fibroblasts are actively involved in regulating the immune response, and in
particular the switch from acute to chronic inflammation [2-4].

Homeostasis of the immune system is vital to prevent leukocytes accumulating in the wrong
place at the wrong time, thus potentially exacerbating the inflammatory response. Most
organs lack significant leukocyte traffic in a non-inflamed state, however, during
inflammation, various subsets of leukocytes are recruited leading to accumulation in
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inflamed tissue. Once the inflammation has resolved and the infiltrating immune cells are no
longer required, loss of survival signals initiates leukocyte apoptosis, whilst changes in
chemokine and adhesion molecule profiles enables the migration of leukocytes out of the
inflamed tissue into draining lymph nodes, thereby terminating the inflammatory response.

A characteristic of chronic inflammation is the persistence of such redundant cells, which
may in turn lead to further leukocyte accumulation and the destruction of associated healthy
tissues. A good example of a disordered cellular environment that leads to chronic
inflammation and tissue degradation is found in the joints of patients with rheumatoid
arthritis.

2. Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory disease, the characteristic
clinical feature of which is persistent joint inflammation. The disease is characterised by
inflammation of the synovial membranes of diarthrodial joints in a symmetrical distribution.
This results in erosion of articular cartilage and marginal bone, with subsequent joint
destruction [5].

RA is a complex, multi-factorial disease with a mild to moderate genetic association.
Annually RA affects 10–20/100,000 males and 20–40/100,000 females, its prevalence
varying from approximately 0.5–1% across different populations [6]. Genetic linkage
studies have shown a strong association between destructive forms of RA and certain MHC
class II alleles. A particular sequence of amino acids that lies inside the highly polymorphic
region lining the peptide-binding groove of HLA DR4 is encoded by each of these alleles.
This amino-acid sequence is known as the “shared epitope” [7]. However the coincidence
rate for identical twins is at best 20% [6], making the interpretation of the shared epitope
difficult.

2.1. The rheumatoid synovium
The synovium is a soft tissue, which in healthy people lines the non-cartilaginous surfaces of
diarthrodial joints and tendon sheaths [8,9]. It is composed of a thin cellular layer and a
specialised matrix known as the intima and the subintima, respectively. In early
inflammatory arthritis, tissue oedema is prominent, new blood vessels are formed
(angiogenesis) and synovial-lining hyperplasia can occur. The inflammatory infiltrate is
usually quite mild and consists of scattered neutrophils and lymphocytes (Fig. 1) [10].

As the disease enters its chronic phase, the synovial membrane shows multiple redundant
folds and villi. The subintima contains a heavy chronic inflammatory infiltrate, which is
composed mainly of mononuclear cells, including T-cells, B cells, macrophages and
dendritic cells [11,12]. There are three characteristic types of infiltrate: diffuse, where there
is a lack of leukocyte organisation (~50% of synovia); perivascular cuffs: where leukocytes
surround the endothelium (~20%); and ectopic lymphoid structures where the leukocytes are
organised in such a way as to resemble germinal centres (~20%) [13].

3. The stromal cell contribution to rheumatoid arthritis
3.1. The role of fibroblasts in chronic rheumatoid arthritis

Inflammatory responses occur within tissue microenvironments with contributions from
both haematopoietic (such as lymphocytes) and stromal cells (such as fibroblasts).
Fibroblast-like cells constitute a large population of cells that can be extracted from synovial
tissue. There is growing evidence that activated synovial fibroblasts contribute to the
pathogenesis of rheumatoid arthritis. As well as responding to the factors produced by
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lymphocytes and macrophages that are present in the joint (such as IFN-γ, TNFα and
IL-17), they actively produce and respond to many factors that they themselves make,
forming an autocrine loop [14,15]. This results in changes in the expression of regulatory
genes, signalling molecules, adhesion molecules and over-expression of matrix degrading
enzymes (such as matrix-metalloproteases (MMPs)) that contribute to tissue destruction in
the joint [16]. There is accumulating evidence showing clear phenotypic differences
between fibroblasts of normal and pathological tissue, thus suggesting a role for fibroblasts
in determining the pattern of organ involvement in a particular disease. Fibroblasts
therefore, along with macrophages help define the stromal microenvironment that is unique
to each tissue [17,18].

Studies in which the NF-κB family of transcription factors have been knocked out in mice
have shown the importance of this family of transcription factors in regulating the stromal
cell contribution to inflammation. Mice deficient in RelB, for example, show multi-organ
inflammation, which fails to respond to adoptive transfer of haemopoietic cells, thereby
indicating the importance of stromal elements in these pathological processes. Fibroblasts
from RelB deficient mice over-produce a variety of chemokines and cytokines in response to
stimulation [19,20]; reciprocal studies using human synovial fibroblasts have shown that
many pro-inflammatory cytokines are dependent on NF-κB for their production [21-23].

It has been speculated that synovial fibroblasts share a similar phenotype to mesenchymal
stem cells. This would potentially allow the synovial fibroblast to differentiate into a range
of cell types which share a common mesenchymal origin, such as osteoblasts, chondroblasts,
myocytes and adipocytes, all of which are constituent cell types of the joint [24-26]. This
mesenchymal phenotype would allow the synovial fibroblasts to divide, thereby contributing
to the synovial hyperplasia that is a feature of rheumatoid arthritis.

Further studies have shown that rheumatoid synovial fibroblasts maintain their phenotype
over many passages in culture ex vivo even in the absence of pro-inflammatory cytokines.
This has been most elegantly demonstrated using a SCID mouse model of RA. Isolated RA
synovial fibroblasts were implanted into normal cartilage and transplanted into SCID mice.
RA synovial fibroblasts attached to and invaded deep into the cartilage, whereas fibroblasts
from skin or osteoarthritis synovial fibroblasts did not show such invasive behaviour. The
invasive behaviour shown by the rheumatoid fibroblasts in this model was without cytokine
or chemokine influence, implying a stable, imprinted alteration in cell function [27]. This
and other behaviour has been suggested to indicate a functional similarity of rheumatoid
fibroblasts to invasive tumour cells.

For example, in culture, RA synovial fibroblasts can grow in an anchorage-independent
manner and lose contact inhibition (i.e. normal fibroblasts grow until confluence and then
stop). Molecular mechanisms responsible for this altered phenotype have been suggested to
include somatic mutations in genes such as the p53 tumour suppressor gene. Although
controversial, these mutations have been identified in synovial tissue and synovial cells. It is
possible that these changes in p53 are not primary (i.e. causal), but secondary to prolonged
exposure to hypoxic conditions (i.e. consequential) [28].

In support of the link between hypoxia, cancer and chronic inflammation it is now clear that
hypoxia leads to the activation of chemokine receptors such as CXCR4 that lead to changes
in the migratory properties of monocytes in inflamed tissues [29] as well as a more motile
phenotype in metastatic cancers [30]. The molecular basis for this has been elucidated and
shown to be due to the ability of the hypoxia inducible factor (HIF), regulated by the tumour
suppressor gene (von Hippel–Lindau pVHL), to regulate CXCR4 expression as well as a
range of other proteins including erythropoietin (Epo) and vascular endothelial growth factor
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(VEGF). Therefore the link between hpyoxia and tumour formation and hypoxia and chronic
inflammation may reside at the level of environmental stresses such as oxidative stress on
tumour supressor genes and their subsequent effects on growth factors.

4. The switch from acute to chronic persistent inflammation
4.1. Chronic inflammation

Chronic, persistent inflammation is a complex pathophysiological process which is
characterised both pathologically, in that the predominant cell types are lymphocytes and
macrophages, and temporally, in that the inflammatory response lasts for weeks to years as
opposed to days, as seen in most cases of acute inflammation.

During the initial phases of an inflammatory response, large numbers of leukocytes are
recruited to the injured site. They are recruited in response to endothelial changes such as
adhesion molecule up-regulation and chemokine-mediated attraction. Normally
inflammation resolves, and naturally occurring anti-inflammatory mediators gradually
replace pro-inflammatory mediators. Examples of naturally occurring anti-inflammatory
mediators include annexin 1 which acts via paracrine and autocrine routes to down-regulate
the process of leukocyte extravasation into tissues [31]. Lipoxins are another example of
endogenously produced mediators that are involved in inhibiting neutrophil chemotaxis,
adhesion and transmigration, induced by mediators such as leukotrienes (products of
arachidonic acid) [32]. While lipoxins inhibit attraction of neutrophils, they are potent
chemoattractants for monocytes. This is important for the resolution of inflammation as
macrophages remove apoptotic neutrophils from the inflammatory environment by
phagocytosis. Once inflammatory cells are no longer required, those cells that are in the
tissues either exit out of the tissues (via draining lymphatics) or they die through the loss of
survival signals and initiation of apoptosis. However in RA, stromal elements within the
microenvironment continue to provide survival signals and express lower levels of naturally
occurring anti-inflammatory agents such as annexin-1, resulting in the inappropriate
accumulation and survival of leukocytes (Fig. 2).

4.2. Persistence of the chronic inflammatory infiltrate
In acute resolving inflammation, the processes of cell recruitment, proliferation, emigration
and death are carefully balanced, resulting in tissue homeostasis (Fig. 2). However, if one or
more of these processes become imbalanced, persistence of the infiltrate may occur,
contributing to tissue hyperplasia and the destruction of associated healthy tissues, a feature
that is characteristic of persistent chronic inflammation in the synovium. Examples of
disordered cellular environments which may lead to tissue hyperplasia, and/or degradation
can also be found in-patients autoimmune thyroid disease and Sjögrens syndrome. The
stromal microenvironment plays an important role in these processes, by producing
cytokines and chemokines such as IFNβ and SDF-1α (CXCL12), which promote the
survival and retention respectively of cells in the rheumatoid joint.

Synovial fibroblasts have been shown to be potent producers of cytokines, adhesion
molecules and chemokines, such as IL-6, IFN-β, MCP-1 (CCL2), VCAM (CD 106) that
attract and retain large numbers of leukocytes in the inflamed synovium [33-35]. These two
properties of synovial fibroblasts from RA patients may sustain chronic inflammation and
prevent the resumption of normal tissue homeostasis within the rheumatoid synovium.
Recent experimental data has suggested that stromal cells, such as fibroblasts might be
involved in the switch from acute to chronic inflammation (Switch 1) and the switch to
resolution or persistent inflammation (Switch 2) (Fig. 3). Synovial fibroblasts secrete high
levels of IL-6 along with IL-8 (CXCL8), a potent chemoattractant for neutrophils [36]. In
response to pro-inflammatory stimuli, neutrophils shed IL-6 receptors, which in combination

Burman et al. Page 4

Joint Bone Spine. Author manuscript; available in PMC 2011 June 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



with IL-6 bind to the gp-130 transducing molecule of the IL-6 receptor complex. This
autocrine stimulation of stromal cells by IL-6 causes them to release MCP-1 (CCL2) a
chemokine that attracts monocytes to the site of inflammation. In this way, stromal cells are
important in organising the quality and quantity as well as the sequential recruitment of
leukocyte subsets during an inflammatory response [37,38].

Rheumatoid synovial fibroblasts support the survival of T cells within the rheumatoid
synovium by producing molecules that prevent T cells from entering apoptosis. Initial
investigations showed that fibroblast conditioned media could sustain T cells in vitro
without causing T cells to proliferate [39]; subsequently rheumatoid synovial fibroblasts
were shown to secrete interferon beta (IFN-β). IFN-β increases levels of Bcl-XL, an anti-
apoptotic protein within T cells, but does not affect levels of Bcl-2 [40]. It is by this
mechanism that the rheumatoid synovium is thought to inappropriately promote the survival
of T cells that under normal conditions should die by apoptosis. Synovial fibroblasts also
support the survival of B cells by expressing VCAM (CD106) on their surface by a similar
mechanism of up-regulating Bcl-XL [41].

Chronic persistent inflammation has strong links with the physiological process of wound
repair. It has been suggested that chronic, persistent inflammation may occur as a result of
failure of wound healing [42]. Both processes are characterised by the formation of new
tissue, such as endothelium, smooth muscle and fibroblasts. Interestingly these new cells are
not necessarily derived from adjacent tissue, but from blood borne precursors called
fibrocytes. Fibrocytes defined by markers of both haemopoietic (CD45) and stromal
lineages (smooth muscle actin and vimentin) circulate within the blood and can home to
areas of inflammation, where they differentiate into a variety of different stromal cell types
[43-45]. Further credence to the idea that chronic, persistent inflammation is a failure of
wound healing comes from the recent finding that synovial fibroblasts can support the
expansion of inflammatory T cells by expressing HLA-DR and thrombospondin, that is
mainly expressed in chronically inflamed and injured tissues [46,47].

5. Chemokines are actively involved in cross-talk between stromal cells
and infiltrating leukocytes

For the immune system to be able to successfully mount a response against foreign
pathogens and maintain tolerance it needs a system to organise the recruitment and
positioning of specific populations of cells, both temporally and spatially. Specific
microenvironments release chemokines that in combination with chemokine receptors
recruit specific populations of cells to specific sites. Cell recruitment relies on the co-
ordinated action of cell activation, adhesion, chemoattraction and transmigration across the
endothelium. Chemokines are a super-family of small, secreted proteins (8–10 kDa) that
share the ability to attract leukocytes. Presently 50 chemokines have been identified,
classified into four structural groups based on the positioning of conserved cysteine residues,
resulting in CXC, CC, XC and CX3C motifs [48]. Chemokines induce cell migration and
activation by binding to specific G protein coupled cell surface receptors on target cells
[49,50].

5.1. Homeostatic and inflammatory chemokines
Chemokines can be classified functionally as either inflammatory (inducible) or homeostatic
(constitutive) [51]. Homeostatic chemokines are constitutively expressed in discrete
microenvironments, both within lymphoid tissues and in non-lymphoid tissues such as skin
and mucosa, where they are involved in basal cell trafficking and positioning of cells during
haematopoiesis, antigen sampling in secondary lymphoid tissue and immune surveillance.
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For example the chemokine receptor CCR7 binds the ligands SLC (CCL21) and ELC
(CCL19) which are critical in the physiological circulation of naive T cells, B cells and
dendritic cells through secondary lymphoid organs [52]. Inflammatory chemokines are
expressed in most tissues by different types of resident cells and by infiltrating leukocytes in
response to inflammatory cytokines and other pro-inflammatory stimuli.

Surprisingly, in chronic inflammatory diseases such as RA and Hashimoto’s disease, in
addition to inflammatory chemokines such as IP-10 (CXCL10), RANTES (CCL5) and IL-8
(CXCL8), homeostatic chemokines are inappropriately expressed leading to the formation of
ectopic lymphoid structures [53]. The presence of pro-inflammatory cytokines such as
TNFα and lymphotoxin in areas of chronic inflammation mirrors the involvement of these
cytokines in the development and organisation of secondary lymphoid organs, so that in
chronic inflammation, ontogeny appears to be recapitulated just as has been observed in
cancer [54,55].

In rheumatoid arthritis, TGF-β derived from stromal cells within the synovial
microenvironment has been shown to maintain inappropriately high levels of CXCR4 on
synovial T cells. This along with synovial endothelial cells producing SDF-1 (the ligand for
CXCR4) implicates these chemokines in the retention of T cells within the joint and thus
suggests a role for the stromal microenvironment in the pathology of this chronic persistent
disease [56,57]. Data from our own laboratory has indicated how the stromal
microenvironment up-regulates the chemokine receptor profile expression on T cells
including CCR5, CCR7, CXCR3 and CXCR4. In this way the stromal microenvironment
retains T cells within the synovium.

6. Conclusions
The persistent accumulation of leukocytes within inflamed tissues results in an inflammatory
milieu that encourages disordered interactions between leukocytes and stromal cells.
Chemokines are important molecules, vital for the spatial and temporal positioning of cells.
When their production or the expression of their receptors become dysregulated, cells no
longer have the appropriate stimulus to enter or leave sites of inflammation. Recent evidence
has shown that chemokines derived from synovial fibroblasts and the endothelium lead to
the selective recruitment of leukocyte subsets. Under normal conditions, fibroblasts in the
synovium have little contact with immune cells. In RA, however, inappropriate synovial
fibroblast–T cell interactions have the ability to influence both the survival and
accumulation of lymphocytes in the synovium [58]. In this review we have illustrated that
fibroblasts are not just structural cells but play an important part in regulating the intensity
and persistence of the inflammatory response.

Many inflammatory diseases are site specific, with well-defined tissue tropism. It remains
unclear why multiple sclerosis lesions are confined to the brain, or why psoriatic lesions
occur only in the skin. The molecular basis for site specific inflammatory responses remains
obscure, but there is now accumulating evidence that distinct stromal cells such as
fibroblasts are responsible for directing the site-specificity of inflammation. The stromal
microenvironment may imprint a “post-code” on inflammatory leukocytes that governs their
subsequent return to that specific location [59]. Evidence from our own laboratory has
shown that there are clear differences in the cytokines and chemokines produced, along with
distinct gene profiles of fibroblasts from different sites [60]. In this way stromal cells might
direct the location of an inflammatory response, in addition to perpetuating inflammation in
persistent inflammatory diseases.
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Fig. 1.
Synovial changes in the rheumatoid synovium. In the normal joint, the bones move past
each other at the cartilage–cartilage interface, lubricated by the synovial fluid. The capsule is
composed of connective tissue and synovial membrane. The synovial membrane covers
most of the intraarticular surface. The synovial membrane has two layers, known as the
intima and the sub-intima. The intima is usually three cells thick and is in direct contact with
the intimal fibroblasts, fat cells and mononuclear cells. In a joint with RA, the synovial
membrane is swollen, hyperplasic and has villi projecting into the joint cavity (pannus). The
pannus is able to migrate under the cartilage and into the bone and causing damage to the
bone that can be seen in X-rays. Extensive angiogenesis creates an infiltration of leukocytes
that cause oedema.
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Fig. 2.
Tissue homeostasis depends upon a balance between cell recruitment, division, emigration
and death. During a normal inflammatory response tissue homeostasis is returned as cells
emigrate out of the inflamed tissue or die by apoptosis (a). However in chronic, persistent
inflammation, inappropriate signals from the stroma cause the accumulation/retention and
prevent the onset of apoptosis of inflammatory leukocytes.
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Fig. 3.
Switches from acute to chronic, persistent inflammation. Switch 1 to chronic inflammation.
During acute inflammation, neutrophils are recruited by IL-8 (CXCL8) released by stromal
cells. Pro-inflammatory stimuli cause neutrophils to shed their IL-6 receptor, that in
combination with gp-130 expressed on the surface of stromal cells causes the release of
chemokines such as MCP-1 (CCL2) which attracts mononuclear cells such as monocytes
and lymphocytes leading to a chronic inflammatory response. Switch 2 to chronic persistent
inflammation. Normally chronic inflammation resolves itself, however in some cases it fails
to resolve and instead leads to chronic, persistent inflammation that be characterised by the
formation of ectopic germinal centre-like structures within the inflamed tissue.

Burman et al. Page 13

Joint Bone Spine. Author manuscript; available in PMC 2011 June 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


