145 research outputs found

    Cell-size maintenance: universal strategy revealed

    Full text link
    How cells maintain a stable size has fascinated scientists since the beginning of modern biology, but has remained largely mysterious. Recently, however, the ability to analyze single bacteria in real time has provided new, important quantitative insights into this long-standing question in cell biology

    Interactions of Cationic Peptides and Ions with Negatively Charged Lipid Bilayers

    Get PDF
    In this thesis we study the interactions of ions and cationic peptides with a negatively charged lipid bilayer in an ionic solution where the electrostatic interactions are screened. We first examine the problem of charge renormalization and inversion of a highly charged bilayer with low dielectric constant. To be specific, we consider an asymmetrically charged lipid bilayer, in which only one layer is negatively charged. In particular, we study how dielectric discontinuities and charge correlations among lipid charges and condensed counterions influence the effective charge of the surface. When counterions are monovalent, e. g. , Na+, our mean-field approach implies that dielectric discontinuities can enhance counterion condensation. A simple scaling picture shows how the effects of dielectric discontinuities and surface-charge distributions are intertwined: Dielectric discontinuities diminish condensation if the backbone charge is uniformly smeared out while counterions are localized in space; they can, however, enhance condensation when the backbone charge is discrete. In the presence of asymmetric salts such as CaCl2, we find that the correlation effect, treated at the Gaussian level, is more pronounced when the surface has a lower dielectric constant, inverting the sign of the charge at a smaller value of Ca2+ concentration. In the last chapter we study binding of cationic peptides onto a lipid-bilayer membrane. The peptide not only interacts electrostatically with anionic lipids, rearranging their spatial distributions, but it can also insert hydrophobically into the membrane, expanding the area of its binding layer (i. e. , the outer layer). We examine how peptide charges and peptide insertion (thus area expansion) are intertwined. Our results show that, depending on the bilayer's surface charge density and peptide hydrophobicity, there is an optimal peptide charge yielding the maximum peptide penetration. Our results shed light on the physics behind the activity and selective toxicity of antimicrobial peptides, i. e. , they selectively rupture bacterial membranes while leaving host cells intact

    Membrane-Disrupting Activity of Antimicrobial Peptides and the Electrostatic Bending of Membranes

    Get PDF
    Antimicrobial peptides (AMPs) are not only fast microbe-killing molecules deployed in the host defense of living organisms but also offer valuable lessons for developing new therapeutic agents. While the mode of action of AMPs is not clearly understood yet, membrane perturbation has been recognized as a crucial step in the microbial killing mechanism of many AMPs. In this thesis, we first present a physical basis for the selective membrane-disrupting activity of cationic AMPs. To this end, we present a coarse-grained physical model that approximately captures essential molecular details such as peptide amphiphilicity and lipid composition (e.g., anionic lipids). In particular, we calculate the surface coverage of peptides embedded in the lipid headgroup-tail interface and the resulting membrane-area change, in terms of peptide and membrane parameters for varying salt concentrations. We show that the threshold peptide coverage on the membrane surface required for disruption can easily be reached for microbes, but not for the host cell -- large peptide charge (≳4) is shown to be the key ingredient for the optimal activity-selectivity of AMPs (in an ambient-salt dependent way). Intriguingly, we find that in a higher-salt environment, larger charge is required for optimal activity. Inspired by membrane softening by AMPs, we also study electrostatic modification of lipid headgroups and its effects on membrane curvature. Despite its relevance, a full theoretical description of membrane electrostatics is still lacking -- in the past, membrane bending has often been considered under a few assumptions about how bending modifies lipid arrangements and surface charges. Here, we present a unified theoretical approach to spontaneous membrane curvature, C0, in which lipid properties (e.g., packing shape) and electrostatic effects are self-consistently integrated. Our results show that C0 is sensitive to the way lipid rearrangements and divalent counterions are modeled. Interestingly, it can change its sign in the presence of divalent counterions, thus stabilizing reverse hexagonal (HII) phases

    Dynamic visits of cortical structures probe for cell size.

    Get PDF
    All cells show size homeostasis owing to coordination of division with growth. In this issue, Allard et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201709171) establish that transient inhibitory visits of a negative regulator of Cdk1 to cortical oligomeric platforms increase in number and duration with cell growth, suggesting how Cdk1 activation is coupled to cell size

    Combined 1H-Detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments

    Get PDF
    Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample. Our method allows the structure and function of membrane proteins to be studied in their native environments, across different spatial and temporal resolutions, and the combination is more powerful than each technique individually. We use the method to demonstrate that the bacterial membrane protein YidC adopts a different conformation in native membranes and that substrate binding to YidC in these native membranes differs from purified and reconstituted system
    corecore