232 research outputs found

    Constitutional Ramifications of the Police Lineup

    Get PDF

    Constitutional Ramifications of the Police Lineup

    Get PDF

    Transit time flow measurement in arterial grafts

    Get PDF
    Coronary artery bypass grafting (CABG) is one of the foundations of treatment for coronary artery disease. While it has improved substantially since its inception more than 50 years ago, including a rising use of multiple arterial grafting, intraoperative quality assessment is yet to be disseminated as an integral part of the procedure. Herein we review the fundamentals of intraoperative quality assessment in CABG using transient time flow measurement (TTFM) with a focus on its use in arterial grafting

    Transcriptomic comparison of communally reared wild, domesticated and hybrid Atlantic salmon fry under stress and control conditions

    Get PDF
    Background Domestication is the process by which organisms become adapted to the human-controlled environment. Since the selection pressures that act upon cultured and natural populations differ, adaptations that favour life in the domesticated environment are unlikely to be advantageous in the wild. Elucidation of the differences between wild and domesticated Atlantic salmon may provide insights into some of the genomic changes occurring during domestication, and, help to predict the evolutionary consequences of farmed salmon escapees interbreeding with wild conspecifics. In this study the transcriptome of the offspring of wild and domesticated Atlantic salmon were compared using a common-garden experiment under standard hatchery conditions and in response to an applied crowding stressor. Results Transcriptomic differences between wild and domesticated crosses were largely consistent between the control and stress conditions, and included down-regulation of environmental information processing, immune and nervous system pathways and up-regulation of genetic information processing, carbohydrate metabolism, lipid metabolism and digestive and endocrine system pathways in the domesticated fish relative to their wild counterparts, likely reflective of different selection pressures acting in wild and cultured populations. Many stress responsive functions were also shared between crosses and included down-regulation of cellular processes and genetic information processing and up-regulation of some metabolic pathways, lipid and energy in particular. The latter may be indicative of mobilization and reallocation of energy resources in response to stress. However, functional analysis indicated that a number of pathways behave differently between domesticated and wild salmon in response to stress. Reciprocal F1 hybrids permitted investigation of inheritance patterns that govern transcriptomic differences between these genetically divergent crosses. Additivity and maternal dominance accounted for approximately 42 and 25% of all differences under control conditions for both hybrids respectively. However, the inheritance of genes differentially expressed between crosses under stress was less consistent between reciprocal hybrids, potentially reflecting maternal environmental effects. Conclusion We conclude that there are transcriptomic differences between the domesticated and wild salmon strains studied here, reflecting the different selection pressures operating on them. Our results indicate that stress may affect certain biological functions differently in wild, domesticated and hybrid crosses and these should be further investigated

    Forensic identification of severely degraded Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) tissues

    Get PDF
    Background: Aquaculture is a globally important and rapidly growing industry. It contributes positively to the economy and sustainability of coastal communities, but it is not without regulatory challenges. These challenges are diverse, and may include identification of fish discarded in an illegal manner, biological discharge from fish ensilage tanks, and partially destroyed or processed tissues. Robust genetic tools are required by management authorities to address these challenges. In this paper, we describe nine species-specific primer sets amplifying very short DNA fragments within the mitochondrial DNA cytochrome c oxidase (COI) gene, which were designed to permit diagnostic identification of degraded DNA from two of the most commonly farmed salmonids in Europe and North America. Results: Of the nine designed primer sets, six were found to be species-specific (four Atlantic salmon, two rainbow trout), whereas the remaining three sets (two Atlantic salmon, one rainbow trout) also amplified a product from other, closely related, salmonid DNA templates. Screening of DNA templates from 11 other non-salmonid native fish species did not produce PCR products with any of the primer sets. Specific tests confirmed the ability of these markers to identify Atlantic salmon and rainbow trout tissues in treated food products, chemically treated ensilage waste and fillets left to degrade in saltwater for up to 31 days at 15°C. Importantly, these markers provided diagnostic identification in cases where other genetic methods failed because of degraded DNA quality. Conclusions: Results from this study demonstrate that amplification of very short DNA fragments using species-specific primers represents a robust and versatile method to create cheap and efficient genetic tests that can be implemented in a range of forensic applications. These markers will provide fishery, aquaculture and food regulatory authorities with a method to investigate and enforce regulations within these industries

    DNA polymorphism underlying allozyme variation at a malic enzyme locus (mMEP-2*) in Atlantic salmon (Salmo salar L.)

    Get PDF
    A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in Atlantic salmon (\textit{Salmo salar} L.). The resultant amino acid substitution, which alters the charge of the allelic products, matches the differential mobility of the two allozyme alleles, while allozyme and SNP assays revealed genotyping concordance in 257 of 258 individuals. A single mismatch, homozygous allozyme vs heterozygote SNP, suggests the presence of a second, less common null allele

    Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes

    Get PDF
    Genome size varies significantly across eukaryotic taxa and the largest changes are typically driven by macro-mutations such as whole genome duplications (WGDs) and proliferation of repetitive elements. These two processes may affect the evolutionary potential of lineages by increasing genetic variation and changing gene expression. Here we elucidate the evolutionary history and mechanisms underpinning genome size variation in a species rich group of Neotropical catfishes (Corydoradinae) with extreme variation in genome size - 0.6pg to 4.4 pg per haploid cell. Firstly, genome size was quantified in 65 species and mapped onto a novel fossil-calibrated phylogeny. Two evolutionary shifts in genome size were identified across the tree - the first between 43-49 Mya (95% highest posterior density (HPD) 36.2-68.1 Mya) and the second at ~19 Mya (95% HPD 15.3-30.14 Mya). Secondly, RAD sequencing was used to identify potential WGD events and quantify transposable element abundance in different lineages. Evidence of two lineage scale WGDs were identified across the phylogeny, the first event occurring between 54-66 Mya (95% HPD 42.56-99.5 Mya) and the second at 20-30 Mya (95% HPD 15.3-45 Mya) based on haplotype numbers per contig and between 35-44 Mya (95% HPD 30.29-64.51 Mya) and 20-30 Mya (95% HPD 15.3-45 Mya) based on SNP read ratios. Transposable element abundance increased considerably in parallel with genome size, with a single TE-family (TC1-IS630-Pogo) showing several increases across the Corydoradinae, with the most recent at 20-30 Mya (95% HPD 15.3-45 Mya) and an older event at 35-44 Mya (95% HPD 30.29-64.51 Mya). We identified signals congruent with two WGD duplication events, as well as an increase in TE abundance across different lineages, making the Corydoradinae an excellent model system to study the effects of WGD and TEs on genome and organismal evolution

    Recent Decisions

    Get PDF

    Linking Scales of Life-History Variation With Population Structure in Atlantic Cod

    Get PDF
    It is increasingly recognised that sustainable exploitation of marine fish requires the consideration of population diversity and associated productivity. This study used a combination of genotypic screening and phenotypic traits to define the scale of population structuring in Atlantic cod inhabiting the northern North Sea (ICES Sub-division 4a) and Scottish west coast (ICES Division 6a). The genetic analysis indicated an isolation by distance pattern with an even finer scale structuring than previously reported, that persisted over a decade and between feeding and spawning seasons. Spatial variation in phenotypic traits reflected genetic variation with cod maturing later and at a larger size near the Viking Bank in 4a. The identified population structuring provides an explanation for differences in historic changes in maturation schedules and the temperature exposure recorded in previous electronic tagging studies. The study also highlights how the mismatch between stock divisions and population units is leading to a misunderstanding about stock recovery
    • …
    corecore