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Abstract

A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic

allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in

Atlantic salmon (Salmo salar L.). The resultant amino acid substitution, which alters

the charge of the allelic products, matches the differential mobility of the two

allozyme alleles, whereas allozyme and SNP assays revealed genotyping concordance

in 257 of 258 individuals. A single mismatch, homozygous allozyme vs. heterozygote

SNP, suggests the presence of a second, less common null allele.

K E YWORD S

allozyme, malic enzyme, population, selection, SNP

The study of loci under selection can shed light on adaptive evolution-

ary processes and may be particularly informative for population

delineation and management (Powers & Schulte, 1998; Watt, 1994).

The nuclear DNA encoded mitochondrial NAPD-dependent malic

enzyme locus mMEP-2* in Atlantic salmon, Salmo salar L., exhibits a

diallelic allozyme polymorphism (alleles *100 and *125), which is vari-

able throughout the species' geographic range (Bourke et al., 1997).

A number of population-based studies have highlighted mMEP-2*

allele and genotype frequencies that are indicative of a selection

signal (e.g. Gilbey et al., 1999; Jordan et al., 1990, 1997; Moran

et al., 1998; Verspoor & Jordan, 1989). Further research has stalled,

however, with population genetic studies now using direct DNA

marker screening platforms. To prime further research into mMEP-2*

the authors report on the identification of a causal SNP (accession

ss9410532730) for the observed mMEP-2* allozyme polymorphism

and the development of simple rapid DNA-based assays to survey it.

Frozen skeletal muscle tissues for both allozyme and DNA screen-

ing were opportunistically acquired from archived materials, collected

over a 19-year period (1997–2015) from a range of unrelated

projects. These comprised 258 individuals (including pedigree parents

detailed later) from six different sources: two rivers (Dee and Tay,

Scotland n = 36 and 32, respectively), three commercial European

farm strains (n = 50, 40 and 40) and a ranch strain (Burrischoole,

Ireland n = 60). In addition, archived DNA samples from wild

populations inhabiting the latitudinal limits of the species range were

also surveyed: two rivers from Finnmark, Norway (n = 46 each;

Kongsfjordelva and Repparfjordelva) and two rivers from northern

Spain (n = 30 each; Rio Ulla and Rio Bidasoa). Sampling was

conducted according to national regulations in place at the time the

specimens were taken.

The gene search focused on archived DNAs from two S. salar

mapping panels (Br5 and Br6) originally generated from an

EU-funded linkage mapping project (SALMAP, 1997–2000). The

salmon families interrogated were outcrosses involving four

wild-caught adults (River Tay, Scotland), each pedigree comprising

sire, dam and 48 progeny. Three allozyme loci, including mMEP-2*,

were found among the c. 350 markers, mostly short tandem repeats

(STRs), assigned to a low-resolution map based on these pedigrees

(Danzmann et al., 2005).

Starch gel electrophoresis of skeletal muscle extracts resolves

three phenotypes, indicative of polymorphism at mMEP-2* involving

two alleles (*100 and *125; Figure 1a) as previously described

(Cross et al., 1979). Variability at mMEP-2* proved to be informative

for both pedigrees (Br5 – sire *100/*125 � dam *100/*100; Br6 –

male *100/*125 � *100/*125). Screening of the progeny confirmed

Mendelian inheritance in both pedigrees.
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The preliminary search for MEP genes was conducted in 2012.

Using malic enzyme vertebrate homologue sequences (mouse and

zebrafish) as a starting point, NCBI and EBI databases (plus salmonid

TIGR and GRASP EST repositories – no longer accessible) were inter-

rogated to identify potentially relevant mRNA sequences in S. salar.

For clarity, the gene locations and mRNA sequences for S. salar

reported here are referenced to the latest (May 2022) Atlantic salmon

genome assembly (Ssal_v3.1, NCBI; RefSeq GCF_905237065.1), and

genes are referred to by allozyme nomenclature. Multiple BLASTn/x

analyses identified two main mitochondrial-type MEP mRNAs

(XM_014164545.2 and XM_014174329.2) and their genes identified

(LOC106581960, on chromosome 21 and LOC106586750 on chro-

mosome 25, respectively). These were assumed to represent the

expected duplicate pair of mMEP* enzyme loci. Using a draught

genome, kindly provided by Ben Koop, STR loci located within intronic

regions of both genes were identified and screened in the pedigrees

(see Supporting Information Table S1 for details). Independent segre-

gation (P = 0.8) was found between the LOC106581960 STR and

mMEP-2*. In contrast, there was complete co-segregation between

LOC106586750 STR alleles and mMEP-2* alleles (i.e., zero recombi-

nants among the 96 progeny), identifying LOC106586750 as the

mMEP-2* gene, whereas LOC106581960 is likely to be mMEP-1*.

The mMEP-2* gene (30,884 bp) comprises 15 identified exons

(3853 bp), with the amino acid coding sequence (CDS) comprising

614 codons – spanning mid-exon 2 to mid-exon 15. A set of eight

PCR assays were devised to allow sequencing of the entire CDS

region (Supporting Information Table S2). Full CDS sequencing of two

progeny from family Br6 (alternate allozyme homozygotes *100/*100

and *125/*125) was undertaken. Only a single point mutation

difference in the CDS was found between the two individuals, a non-

synonymous A!G substitution (*100 and *125 alleles, respectively) in

exon 10 (position 1273 of XM_014174329.2; Supporting Information

Figure S1). This produces a charge-changing amino acid replacement

at codon 371 – asparagine (N, no charge; *100 allele) for aspartic acid

(D, negative charge; *125 allele), consistent with faster electrophoretic

movement of the *125 allele products towards the positive pole.

The mutation sits within the NADP+ binding domain of the enzyme.

This polymorphism has been captured in accessions, the amino acid

substitution being the only difference between the original protein

reference sequences XP_014029804.1 (D) and its recently updated

replacement XP_014029804.2 (N).

The identified SNP (NC_059466.1:40628412:A:G, SNP accession

ss9410532730) occurs within the restriction site of restriction

enzyme BsaH1, allowing RFLP-based detection, e.g., using the exon

8–10 primer set (Table 1). The SNP “A” base disrupts the restriction

enzyme site (no cutting), whereas the “G” base permits restriction,

yielding 1004 and 177 bp products (Figure 1b). A fluorescent allele-

specific PCR assay (KASP; LGC Genomics) was also designed as a

rapid screening tool (Figure 1c; Table 2).

In total 258 individuals from six different populations/stocks

were screened for both allozyme and SNP variability (identifying

61, 124 and 73 as *100/*100, *100/*125 and *125/*125 allozyme

“genotypes,” respectively). Polymorphism was observed in all six

stocks. There was almost complete concordance between allozyme

and SNP scoring (257 of 258 individuals). A single fish was scored as

*100/*100 for allozyme and AG with both RFLP and KASP assay.

The entire CDS of this individual was sequenced, confirming the AG

genotype. No other sequence differences were found. A null allele,

caused by mutation in a regulatory gene region, could account for

this observation.

Four population samples from both latitudinal range extremes

were screened for SNP variability. Contrasting frequencies for the

“A” allele (*100) were observed between northern samples

(f(A) = 0.48 and 0.33; Kongsfjordelva and Repparfjordelva,
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F IGURE 1 Screening of MEP-2* polymorphism. (a) Starch gel zymogram of muscle extract, 1 = *100/*100; 2 = *100/*125; 3 = *125/*125;
(b) SNP RFLP analysis, BsaHI digests of exon 8–10 amplicons (small 177 bp band usually very weak); (c) KASP assay, plot of fluorescently
tagged alleles

TABLE 1 RFLP assay primer details. Amplicon size: 1181 bp, PCR
primer annealing temperature: 62�C

Name Primer Sequence (50 ! 30)

Ex8-10.F TTTGACTATCTGACCGACCGTTCAC

Ex8-10.R CTCGCCTTAATAGGTGTGCGTTTCT
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respectively) and southern samples (f(A) = 1.00 and 0.67; Ulla and

Bidasoa, respectively).

Converting targeted allozyme polymorphisms to DNA-based

assays has many practical advantages. Integration with high through-

put modern screening platforms is made possible, sample storage is

simplified and ethical concerns relating to large-scale surveys can be

addressed through non-invasive sampling. Furthermore, temporal

studies can be expanded by both screening of curated samples and

the assimilation of existing allozyme datasets. The approach has been

used for salmonid studies in the past (e.g., Brunelli et al., 2008;

McMeel et al., 2001).

With genomic resources for species expanding at a rapid rate, the

identification of DNA mutations underlying allozyme variation is

becoming more straightforward. In the current study, the use of

mapping pedigrees to confidently distinguish between duplicate loci

was particularly helpful. The sole point mutation within the CDS of

alternate allozyme homozygote sibs, causing a charge changing amino

acid substitution matching electrophoretic expectations, is compelling

evidence that this is a causal SNP. Furthermore, there was extremely

high concurrence between allozyme and SNP assays from the same

individuals (>99.5%), and similar allele frequency disparity was

observed for both SNP assay (this study) and allozyme assay

(Verspoor et al., 2005) among populations from extremes of the

S. salar latitudinal range. Both observations lend support for the SNP

polymorphism being a robust proxy for previously reported mMEP-2*

allozyme polymorphism.

A single mismatch, homozygous allozyme vs. heterozygote SNP

genotype, was observed. This could be indicative of an additional low

frequency “null” allele, which could potentially generate a false selec-

tion signal in samples, if present at a higher frequency. Nonetheless, a

null allele, which should lead to an overestimation of homozygote

numbers, would not clearly explain the excess of allozyme heterozy-

gotes found among grilse reported by Jordan et al. (1990). Further

work is needed to clarify this issue. There is a large array of potential

regulatory mechanisms that can underlie null alleles (Rojano

et al., 2019), which can be extremely difficult to identify solely from

DNA sequence data (e.g., Saha et al., 2022).

This characterised DNA polymorphism and assay will allow for

more intensive work into the widely suspected selective action at

mMEP-2*. As well as the single locus assays described above, it

should be straightforward to include this assay into existing bespoke

SNP panels used routinely for population and pedigree screening, and

it is already represented multiple times on an existing Atlantic salmon

high-density genotyping array (Houston et al., 2014).
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