90 research outputs found

    Emission of intermediate mass fragments from hot 116^{116}Ba^* formed in low-energy 58^{58}Ni+58^{58}Ni reaction

    Full text link
    The complex fragments (or intermediate mass fragments) observed in the low-energy 58^{58}Ni+58^{58}Ni116\to ^{116}Ba^* reaction, are studied within the dynamical cluster decay model for s-wave with the use of the temperature-dependent liquid drop, Coulomb and proximity energies. The important result is that, due to the temperature effects in liquid drop energy, the explicit preference for α\alpha-like fragments is washed out, though the 12^{12}C (or the complementary 104^{104}Sn) decay is still predicted to be one of the most probable α\alpha-nucleus decay for this reaction. The production rates for non-α\alpha like intermediate mass fragments (IMFs) are now higher and the light particle production is shown to accompany the IMFs at all incident energies, without involving any statistical evaporation process in the model. The comparisons between the experimental data and the (s-wave) calculations for IMFs production cross sections are rather satisfactory and the contributions from other \ell-waves need to be added for a further improvement of these comparisons and for calculations of the total kinetic energies of fragments.Comment: 22 pages, 15 figure

    Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells

    Get PDF
    Abstract BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+) were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+) cells with enhanced self renewal and cardioprotection

    Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients

    Get PDF
    Introduction Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT. Methods Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload—alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60–75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)). Results Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.). Conclusion Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III

    Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis

    Get PDF
    A new era has begun in the treatment of ischemic disease and heart failure. With the discovery that stem cells from diverse organs and tissues, including bone marrow, adipose tissue, umbilical cord blood, and vessel wall, have the potential to improve cardiac function beyond that of conventional pharmacological therapy comes a new field of research aiming at understanding the precise mechanisms of stem cell-mediated cardiac repair. Not only will it be important to determine the most efficacious cell population for cardiac repair, but also whether overlapping, common mechanisms exist. Increasing evidence suggests that one mechanism of action by which cells provide tissue protection and repair may involve paracrine factors, including cytokines and growth factors, released from transplanted stem cells into the surrounding tissue. These paracrine factors have the potential to directly modify the healing process in the heart, including neovascularization, cardiac myocyte apoptosis, inflammation, fibrosis, contractility, bioenergetics, and endogenous repair

    A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response

    Get PDF
    T-cells and antigen presenting cells are an essential part of the adaptive immune response system and how they interact is crucial in how the body effectively fights infection or responds to vaccines. Much of the experimental work studying interaction forces between cells has looked at the average properties of bulk samples of cells or applied microscopy to image the dynamic contact between these cells. In this paper we present a novel optical trapping technique for interrogating the force of this interaction and measuring relative interaction forces at the single-cell level. A triple-spot optical trap is used to directly manipulate the cells of interest without introducing foreign bodies such as beads to the system. The optical trap is used to directly control the initiation of cell-cell contact and, subsequently to terminate the interaction at a defined time point. The laser beam power required to separate immune cell pairs is determined and correlates with the force applied by the optical trap. As proof of concept, the antigen-specific increase in interaction force between a dendritic cell and a specific T-cell is demonstrated. Furthermore, it is demonstrated that this interaction force is completely abrogated when T- cell signalling is blocked. As a result the potential of using optical trapping to interrogate cellular interactions at the single cell level without the need to introduce foreign bodies such as beads is clearly demonstrated

    4D MUSIC CMR: value-based imaging of neonates and infants with congenital heart disease

    Get PDF
    Abstract Background 4D Multiphase Steady State Imaging with Contrast (MUSIC) acquires high-resolution volumetric images of the beating heart during uninterrupted ventilation. We aim to evaluate the diagnostic performance and clinical impact of 4D MUSIC in a cohort of neonates and infants with congenital heart disease (CHD). Methods Forty consecutive neonates and infants with CHD (age range 2 days to 2 years, weight 1 to 13 kg) underwent 3.0 T CMR with ferumoxytol enhancement (FE) at a single institution. Independently, two readers graded the diagnostic image quality of intra-cardiac structures and related vascular segments on FE-MUSIC and breath held FE-CMRA images using a four-point scale. Correlation of the CMR findings with surgery and other imaging modalities was performed in all patients. Clinical impact was evaluated in consensus with referring surgeons and cardiologists. One point was given for each of five key outcome measures: 1) change in overall management, 2) change in surgical approach, 3) reduction in the need for diagnostic catheterization, 4) improved assessment of risk-to-benefit for planned intervention and discussion with parents, 5) accurate pre-procedural roadmap. Results All FE-CMR studies were completed successfully, safely and without adverse events. On a four-point scale, the average FE-MUSIC image quality scores were >3.5 for intra-cardiac structures and >3.0 for coronary arteries. Intra-cardiac morphology and vascular anatomy were well visualized with good interobserver agreement (r = 0.46). Correspondence between the findings on MUSIC, surgery, correlative imaging and autopsy was excellent. The average clinical impact score was 4.2 ± 0.9. In five patients with discordant findings on echo/MUSIC (n = 5) and catheter angiography/MUSIC (n = 1), findings on FE-MUSIC were shown to be accurate at autopsy (n = 1) and surgery (n = 4). The decision to undertake biventricular vs univentricular repair was amended in 2 patients based on FE-MUSIC findings. Plans for surgical approaches which would have involved circulatory arrest were amended in two of 28 surgical cases. In all 28 cases requiring procedural intervention, FE-MUSIC provided accurate dynamic 3D roadmaps and more confident risk-to-benefit assessments for proposed interventions. Conclusions FE-MUSIC CMR has high clinical impact by providing accurate, high quality, simple and safe dynamic 3D imaging of cardiac and vascular anatomy in neonates and infants with CHD. The findings influenced patient management in a positive manner

    Confirmation in the Cognitive Sciences: The Problematic Case of Bayesian Models

    Get PDF
    Bayesian models of human learning are becoming increasingly popular in cognitive science. We argue that their purported confirmation largely relies on a methodology that depends on premises that are inconsistent with the claim that people are Bayesian about learning and inference. Bayesian models in cognitive science derive their appeal from their normative claim that the modeled inference is in some sense rational. Standard accounts of the rationality of Bayesian inference imply predictions that an agent selects the option that maximizes the posterior expected utility. Experimental confirmation of the models, however, has been claimed because of groups of agents that “probability match” the posterior. Probability matching only constitutes support for the Bayesian claim if additional unobvious and untested (but testable) assumptions are invoked. The alternative strategy of weakening the underlying notion of rationality no longer distinguishes the Bayesian model uniquely. A new account of rationality—either for inference or for decision-making—is required to successfully confirm Bayesian models in cognitive science
    corecore