428 research outputs found
Electronic transitions of iron in almandine-composition glass to 91 GPa
Valence and spin states of Fe were investigated in a glass of almandine (FeAlSiO) composition to 91 GPa by X-ray emission spectroscopy and energy- and time-domain synchrotron Mössbauer spectroscopy in the diamond-anvil cell. Changes in optical properties, total spin moment and Mössbauer parameters all occur predominantly between 1 bar and ~30 GPa. Over this pressure range, the glass changes from translucent brown to opaque and black. The total spin moment of the glass derived from X-ray emission spectroscopy decreases by ~20%. The complementary Mössbauer spectroscopy approaches reveal consistent changes in sites corresponding to 80–90% Fe and 10–20% Fe. The high-spin Fe doublet exhibits a continuous decrease in isomer shift and increase in line width and asymmetry. A high-spin Fe doublet with quadrupole splitting of ~1.2 mm/s is replaced by a doublet with quadrupole splitting of ~1.9 mm/s, a value higher than all previous measurements of high-spin Fe and consistent with low-spin Fe. These observations suggest that Fe in the glass undergoes a continual transition from a high-spin to a low-spin state between 1 bar and ~30 GPa. Almandine glass is not expected to undergo any abrupt transitions in electronic state at deep mantle pressures.National Science FoundationThis is the author accepted manuscript. The final version is available from the Mineralogical Society of America via http://dx.doi.org/10.2138/am-2016-560
Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions
The first-principles periodic linear combination of atomic orbitals method
within the framework of density functional theory implemented in the CRYSTAL06
code has been applied to explore effect of pressure on the Compton profiles and
autocorrelation functions of MgO. Calculations are performed for the B1, B2,
B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk
moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to
B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42
and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2
are found to occur at 340 and 410 GPa respectively. The pressure dependent
changes are observed largely in the valence electrons Compton profiles whereas
core profiles are almost independent of the pressure in all MgO polymorphs.
Increase in pressure results in broadening of the valence Compton profiles. The
principal maxima in the second derivative of Compton profiles shifts towards
high momentum side in all structures. Reorganization of momentum density in the
B1 to B2 structural phase transition is seen in the first and second
derivatives before and after the transition pressure. Features of the
autocorrelation functions shift towards lower r side with increment in
pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials
  Scienc
Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor
derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due
to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2
under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the
EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2
Toward a Theory of Child Well-Being
Assuring the well-being of children has emerged over the past several decades as an important goal for health and social policymakers. Although the concept of child well-being has been operationalized and measured in different ways by different child-serving entities, there are few unifying theories that could undergird and inform these various conceptual and measurement efforts. In this paper, we attempt to construct a theory of child well-being. We first review the social and policy history of the concept of child well-being, and briefly review its measurement based on these conceptualizations. We then examine three types of theories of well-being extant in philosophy - mental states theories, desire-based theories and needs-based theories - and investigate their suitability to serve as prototypes of a theory of child well-being. We develop a constraint that child well-being is important in and of itself and not merely as a way station to future adult well-being (we call this a non-reduction constraint). Using this constraint, we identify the limitations of each of the three sets of theories to serve as a basis for a theory of child well-being. Based on a developmentalist approach, we then articulate a theory of child well-being that contains two conditions. First, a child's stage-appropriate capacities that equip her for successful adulthood, given her environment; and, second, an engagement with the world in child-appropriate ways. We conclude by reviewing seven implications of this theoretical approach for the measurement of child well-being. Key Words Child well-being, philosophy, social policy, child developmentNoneThis is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s11205-014-0665-
The individual environment, not the family is the most important influence on preferences for common non-alcoholic beverages in adolescence
Beverage preferences are an important driver of consumption, and strong liking for beverages high in energy (e.g. sugar-sweetened beverages [SSBs]) and dislike for beverages low in energy (e.g. non-nutritive sweetened beverages [NNSBs]) are potentially modifiable risk factors contributing to variation in intake. Twin studies have established that both genes and environment play important roles in shaping food preferences; but the aetiology of variation in non-alcoholic beverage preferences is unknown. 2865 adolescent twins (18–19-years old) from the Twins Early Development Study were used to quantify genetic and environmental influence on variation in liking for seven non-alcoholic beverages: SSBs; NNSBs; fruit cordials, orange juice, milk, coffee, and tea. Maximum Likelihood Structural Equation Modelling established that beverage preferences have a moderate to low genetic basis; from 18% (95% CI: 10%, 25%) for orange juice to 42% (36%, 43%) for fruit cordials. Aspects of the environment that are not shared by twin pairs explained all remaining variance in drink preferences. The sizeable unique environmental influence on beverage preferences highlights the potential for environmental modification. Policies and guidelines to change preferences for unhealthy beverages may therefore be best directed at the wider environment
Recommended from our members
Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution
This study undertakes a multi-model comparison with the aim to describe and quantify systematic changes of the global energy and water budgets when the horizontal resolution of atmospheric models is increased and to identify common factors of these changes among models. To do so, we analyse an ensemble of twelve atmosphere-only and six coupled GCMs, with different model formulations and with resolutions spanning those of state-of-the-art coupled GCMs, i.e. from resolutions coarser than 100 km to resolutions finer than 25 km. The main changes in the global energy budget with resolution are a systematic increase in outgoing longwave radiation and decrease in outgoing shortwave radiation due to changes in cloud properties, and a systematic increase in surface latent heat flux; when resolution is increased from 100 to 25 km, the magnitude of the change of those fluxes can be as large as 5 W m−2. Moreover, all but one atmosphere-only model simulate a decrease of the poleward energy transport at higher resolution, mainly explained by a reduction of the equator-to-pole tropospheric temperature gradient. Regarding hydrological processes, our results are the following: (1) there is an increase of global precipitation with increasing resolution in all models (up to 40 × 103 km3 year−1) but the partitioning between land and ocean varies among models; (2) the fraction of total precipitation that falls on land is on average 10% larger at higher resolution in grid point models, but it is smaller at higher resolution in spectral models; (3) grid points models simulate an increase of the fraction of land precipitation due to moisture convergence twice as large as in spectral models; (4) grid point models, which have a better resolved orography, show an increase of orographic precipitation of up to 13 × 103 km3 year−1 which explains most of the change in land precipitation; (5) at the regional scale, precipitation pattern and amplitude are improved with increased resolution due to a better simulated seasonal mean circulation. We discuss our results against several observational estimates of the Earth's energy budget and hydrological cycle and show that they support recent high estimates of global precipitation
Structured models of cell migration incorporating molecular binding processes
The dynamic interplay between collective cell movement and the various
molecules involved in the accompanying cell signalling mechanisms plays a
crucial role in many biological processes including normal tissue development
and pathological scenarios such as wound healing and cancer. Information about
the various structures embedded within these processes allows a detailed
exploration of the binding of molecular species to cell-surface receptors
within the evolving cell population. In this paper we establish a general
spatio-temporal-structural framework that enables the description of molecular
binding to cell membranes coupled with the cell population dynamics. We first
provide a general theoretical description for this approach and then illustrate
it with two examples arising from cancer invasion
Perceptions of anti-smoking messages amongst high school students in Pakistan
<p>Abstract</p> <p>Background</p> <p>Surveys have provided evidence that tobacco use is widely prevalent amongst the youth in Pakistan. Several reviews have evaluated the effectiveness of various tobacco control programs, however, few have taken into account the perceptions of students themselves regarding these measures. The aim of this study was to determine the most effective anti-smoking messages that can be delivered to high-school students in Pakistan, based on their self-rated perceptions. It also aimed to assess the impact of pictorial/multi-media messages compared with written health warnings and to discover differences in perceptions of smokers to those of non-smokers to health warning messages.</p> <p>Methods</p> <p>This study was carried out in five major cities of Pakistan in private English-medium schools. A presentation was delivered at each school that highlighted the well-established health consequences of smoking using both written health warnings and pictorial/multi-media health messages. Following the presentation, the participants filled out a graded questionnaire form, using which they rated the risk-factors and messages that they thought were most effective in stopping or preventing them from smoking. The Friedman test was used to rank responses to each of the questions in the form. The Wilcoxon Signed Rank test used to analyze the impact of pictorial/multi-media messages over written statements. The Mann Whitney U test was used to compare responses of smokers with those of non-smokers.</p> <p>Results</p> <p>Picture of an oral cavity cancer, videos of a cancer patient using an electronic voice box and a patient on a ventilator, were perceived to be the most effective anti-smoking messages by students. Addiction, harming others through passive smoking and impact of smoking on disposable incomes were perceived to be less effective messages. Pictorial/multi-media messages were perceived to be more effective than written health warnings. Health warnings were perceived as less effective amongst smokers compared to non-smokers.</p> <p>Conclusion</p> <p>Graphic pictorial/multi-media health warnings that depict cosmetic and functional distortions were perceived as effective anti-smoking messages by English-medium high school students in Pakistan. Smokers demonstrated greater resistance to health promotion messages compared with non-smokers. Targeted interventions for high school students may be beneficial.</p
Changes in var gene mRNA levels during erythrocytic development in two phenotypically distinct Plasmodium falciparum parasites
Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum
Antigenic variation is a subtle process of fundamental importance to the survival of a microbial pathogen. In Plasmodium falciparum malaria, PfEMP1 is the major variable antigen and adhesin expressed at the surface of the infected erythrocyte, which is encoded for by members of a family of 60 var-genes. Peri-nuclear repositioning and epigenetic mechanisms control their mono-allelic expression. The switching of PfEMP1 depends in part on variable transition rates and short-lived immune responses to shared minor epitopes. Here we show var-genes to switch to a common gene that is highly transcribed, but sparsely translated into PfEMP1 and not expressed at the erythrocyte surface. Highly clonal and adhesive P. falciparum, which expressed distinct var-genes and the corresponding PfEMP1s at onset, were propagated without enrichment or panning. The parasites successively and spontaneously switched to transcribe a shared var-gene (var2csa) matched by the loss of PfEMP1 surface expression and host cell-binding. The var2csa gene repositioned in the peri-nuclear area upon activation, away from the telomeric clusters and heterochromatin to transcribe spliced, full-length RNA. Despite abundant transcripts, the level of intracellular PfEMP1 was low suggesting post-transcriptional mechanisms to partake in protein expression. In vivo, off-switching and translational repression may constitute one pathway, among others, coordinating PfEMP1 expression
- …
