48 research outputs found

    Cooperation of the Inducible Nitric Oxide Synthase and Cytochrome P450 1A1 in Mediating Lung Inflammation and Mutagenicity Induced by Diesel Exhaust Particles

    Get PDF
    Diesel exhaust particles (DEPs) have been shown to activate oxidant generation by alveolar macrophages (AMs), alter xenobiotic metabolic pathways, and modify the balance of pro-antiinflammatory cytokines. In this study we investigated the role of nitric oxide (NO) in DEP-mediated and DEP organic extract (DEPE)-mediated inflammatory responses and evaluated the interaction of inducible NO synthase (iNOS) and cytochrome P450 1A1 (CYP1A1). Male Sprague-Dawley rats were intratracheally (IT) instilled with saline, DEPs (35 mg/kg), or DEPEs (equivalent to 35 mg DEP/kg), with or without further treatment with an iNOS inhibitor, aminoguanidine (AG; 100 mg/kg), by intraperitoneal injection 30 min before and 3, 6, and 9 hr after IT exposure. At 1 day postexposure, both DEPs and DEPEs induced iNOS expression and NO production by AMs. AG significantly lowered DEP- and DEPE-induced iNOS activity but not the protein level while attenuating DEPE- but not DEP-mediated pulmonary inflammation, airway damage, and oxidant generation by AMs. DEP or DEPE exposure resulted in elevated secretion of both interleukin (IL)-12 and IL-10 by AMs. AG significantly reduced DEP- and DEPE-activated AMs in IL-12 production. In comparison, AG inhibited IL-10 production by DEPE-exposed AMs but markedly increased its production by DEP-exposed AMs, suggesting that NO differentially regulates the pro- and antiinflammatory cytokine balance in the lung. Both DEPs and DEPEs induced CYP1A1 expression. AG strongly inhibited CYP1A1 activity and lung S9 activity-dependent 2-aminoanthracene mutagenicity. These studies show that NO plays a major role in DEPE-induced lung inflammation and CYP-dependent mutagen activation but a lesser role in particulate-induced inflammatory damage

    Disappearing cosmological constant in f(R) gravity

    Full text link
    For higher-derivative f(R) gravity where R is the Ricci scalar, a class of models is proposed which produce viable cosmology different from the LambdaCDM one at recent times and satisfy cosmological, Solar system and laboratory tests. These models have both flat and de Sitter space-times as particular solutions in the absence of matter. Thus, a cosmological constant is zero in flat space-time, but appears effectively in a curved one for sufficiently large R. A 'smoking gun' for these models would be small discrepancy in values of the slope of the primordial perturbation power spectrum determined from galaxy surveys and CMB fluctuations. On the other hand, a new problem for dark energy models based on f(R) gravity is pointed which is connected with possible overproduction of new massive scalar particles (scalarons) arising in this theory in the very early Universe.Comment: 8 pages, footnote clarified, grammatical typo corrected, references added, final version to be published in JETP

    Gene expression profiling reveals differential effects of sodium selenite, selenomethionine, and yeast-derived selenium in the mouse

    Get PDF
    The essential trace mineral selenium is an important determinant of oxidative stress susceptibility, with several studies showing an inverse relationship between selenium intake and cancer. Because different chemical forms of selenium have been reported to have varying bioactivity, there is a need for nutrigenomic studies that can comprehensively assess whether there are divergent effects at the molecular level. We examined the gene expression profiles associated with selenomethionine (SM), sodium selenite (SS), and yeast-derived selenium (YS) in the intestine, gastrocnemius, cerebral cortex, and liver of mice. Weanling mice were fed either a selenium-deficient (SD) diet (<0.01 mg/kg diet) or a diet supplemented with one of three selenium sources (1 mg/kg diet, as either SM, SS or YS) for 100 days. All forms of selenium were equally effective in activating standard measures of selenium status, including tissue selenium levels, expression of genes encoding selenoproteins (Gpx1 and Txnrd2), and increasing GPX1 enzyme activity. However, gene expression profiling revealed that SS and YS were similar (and distinct from SM) in both the expression pattern of individual genes and gene functional categories. Furthermore, only YS significantly reduced the expression of Gadd45b in all four tissues and also reduced GADD45B protein levels in liver. Taken together, these results show that gene expression profiling is a powerful technique capable of elucidating differences in the bioactivity of different forms of selenium

    Solving the mu problem with a heavy Higgs boson

    Full text link
    We discuss the generation of the mu-term in a class of supersymmetric models characterized by a low energy effective superpotential containing a term lambda S H_1 H_2 with a large coupling lambda~2. These models generically predict a lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to be compatible with the unification of gauge couplings. Here we discuss a specific example where the superpotential has no dimensionful parameters and we point out the relation between the generated mu-term and the mass of the lightest Higgs boson. We discuss the fine-tuning of the model and we find that the generation of a phenomenologically viable mu-term fits very well with a heavy lightest Higgs boson and a low degree of fine-tuning. We discuss experimental constraints from collider direct searches, precision data, thermal relic dark matter abundance, and WIMP searches finding that the most natural region of the parameter space is still allowed by current experiments. We analyse bounds on the masses of the superpartners coming from Naturalness arguments and discuss the main signatures of the model for the LHC and future WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP plus an addendum on the existence of further extremal points of the potential. 47 pages, 16 figure

    Limits on different Majoron decay modes of 100^{100}Mo and 82^{82}Se for neutrinoless double beta decays in the NEMO-3 experiment

    Full text link
    The NEMO-3 tracking detector is located in the Fr\'ejus Underground Laboratory. It was designed to study double beta decay in a number of different isotopes. Presented here are the experimental half-life limits on the double beta decay process for the isotopes 100^{100}Mo and 82^{82}Se for different Majoron emission modes and limits on the effective neutrino-Majoron coupling constants. In particular, new limits on "ordinary" Majoron (spectral index 1) decay of 100^{100}Mo (T1/2>2.71022T_{1/2} > 2.7\cdot10^{22} y) and 82^{82}Se (T1/2>1.51022T_{1/2} > 1.5\cdot10^{22} y) have been obtained. Corresponding bounds on the Majoron-neutrino coupling constant are <(0.41.9)104 < (0.4-1.9) \cdot 10^{-4} and <(0.661.7)104< (0.66-1.7) \cdot 10^{-4}.Comment: 23 pages includind 4 figures, to be published in Nuclear Physics

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Acute Sleep Deprivation and Circadian Misalignment Associated with Transition onto the First Night of Work Impairs Visual Selective Attention

    Get PDF
    Background: Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift. Methodology/Principal Findings: To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05). Conclusions/Significance: These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work

    Target Cell Cyclophilins Facilitate Human Papillomavirus Type 16 Infection

    Get PDF
    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases
    corecore