579 research outputs found

    How South Pacific mangroves may respond to predicted climate change and sea level rise

    Get PDF
    In the Pacific islands the total mangrove area is about 343,735 ha, with largest areas in Papua New Guinea, Solomon Islands, Fiji and New Caledonia. A total of 34 species of mangroves occur, as well as 3 hybrids. These are of the Indo-Malayan assemblage (with one exception), and decline in diversity from west to east across the Pacific, reaching a limit at American Samoa. Mangrove resources are traditionally exploited in the Pacific islands, for construction and fuel wood, herbal medicines, and the gathering of crabs and fish. There are two main environmental settings for mangroves in the Pacific, deltaic and estuarine mangroves of high islands, and embayment, lagoon and reef flat mangroves of low islands. It is indicated from past analogues that their close relationship with sea-level height renders these mangrove swamps particularly vulnerable to disruption by sea-level rise. Stratigraphic records of Pacific island mangrove ecosystems during sea-level changes of the Holocene Period demonstrate that low islands mangroves can keep up with a sea-level rise of up to 12 cm per 100 years. Mangroves of high islands can keep up with rates of sea-level rates of up to 45 cm per 100 years, according to the supply of fluvial sediment. When the rate of sea-level rise exceeds the rate of accretion, mangroves experience problems of substrate erosion, inundation stress and increased salinity. Rise in temperature and the direct effects of increased CO2 levels are likely to increase mangrove productivity, change phenological patterns (such as the timing of flowering and fruiting), and expand the ranges of mangroves into higher latitudes. Pacific island mangroves are expected to demonstrate a sensitive response to the predicted rise in sea-level. A regional monitoring system is needed to provide data on ecosystem changes in productivity, species composition and sedimentation. This has been the intention of a number of programs, but none has yet been implemented

    The Collaborative Image of The City: Mapping the Inequality of Urban Perception

    Get PDF
    A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities.MIT Media Lab Consortiu

    Temperature- and thickness-dependent elastic moduli of polymer thin films

    Get PDF
    The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ

    Molecular subgroups of medulloblastoma: the current consensus

    Get PDF
    Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Expression of an Epitope-Tagged Virulence Protein in Rickettsia parkeri Using Transposon Insertion

    Get PDF
    Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore